A MULTIGRID ALGORITHM FOR THE LOWEST-ORDER RAVIART-THOMAS MIXED TRIANGULAR FINITE-ELEMENT METHOD

被引:45
作者
BRENNER, SC
机构
[1] Clarkson Univ, Potsdam, NY
关键词
ELLIPTIC BOUNDARY VALUE PROBLEM; MULTIGRID METHOD; NONCONFORMING FINITE ELEMENT; MIXED FINITE ELEMENT; RAVIART-THOMAS FINITE ELEMENT;
D O I
10.1137/0729042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An optimal order multigrid method for the lowest-order Raviart-Thomas mixed triangular finite element is developed. The algorithm and the convergence analysis are based on the equivalence between Raviart-Thomas mixed methods and certain nonconforming methods. Both the Dirichlet and singular Neumann boundary value problems for second-order elliptic equations are discussed.
引用
收藏
页码:647 / 678
页数:32
相关论文
共 25 条
[11]  
BRENNER SC, 1989, 4TH P COPP MOUNT C M, P54
[12]  
Ciarlet P.G., 2002, FINITE ELEMENT METHO
[13]  
DOUGLAS J, 1985, MATH COMPUT, V44, P39, DOI 10.1090/S0025-5718-1985-0771029-9
[14]  
FALK RS, 1980, RAIRO-ANAL NUMER-NUM, V14, P249
[15]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[16]  
MANDEL J, 1987, SIAM FRONTIERS APPLI, V3, P131
[17]   A MULTILEVEL ALGORITHM FOR THE BIHARMONIC PROBLEM [J].
PEISKER, P .
NUMERISCHE MATHEMATIK, 1985, 46 (04) :623-634
[18]   PRIMAL HYBRID FINITE-ELEMENT METHODS FOR 2ND-ORDER ELLIPTIC EQUATIONS [J].
RAVIART, PA ;
THOMAS, JM .
MATHEMATICS OF COMPUTATION, 1977, 31 (138) :391-413
[19]  
RAVIART PA, 1977, LECTURE NOTES MATH, V606
[20]   INTERPOLATED BOUNDARY-CONDITIONS IN FINITE-ELEMENT METHOD [J].
SCOTT, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1975, 12 (03) :404-427