FOLLOWING THE ASSEMBLY OF RNA-POLYMERASE DNA COMPLEXES IN AQUEOUS-SOLUTIONS WITH THE SCANNING FORCE MICROSCOPE

被引:128
作者
GUTHOLD, M
BEZANILLA, M
ERIE, DA
JENKINS, B
HANSMA, HG
BUSTAMANTE, C
机构
[1] UNIV OREGON,INST MOLEC BIOL,EUGENE,OR 97403
[2] UNIV OREGON,DEPT CHEM,EUGENE,OR 97403
[3] UNIV OREGON,HOWARD HUGHES MED INST,EUGENE,OR 97403
[4] UNIV CALIF SANTA BARBARA,DEPT PHYS,SANTA BARBARA,CA 93106
关键词
D O I
10.1073/pnas.91.26.12927
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The capability of the scanning force microscope (SFM) to image molecules in aqueous buffers has opened the exciting possibility of following processes of molecular assembly in real time and in near-physiological environments. This capability is demonstrated in this paper by following the assembly process of RNA polymerase-DNA complexes. DNA fragments deposited on mica and imaged in Hepes/MgCl2 are shown before and after Escherichia coli RNA polymerase holoenzyme is injected in the SFM liquid chamber. The protein can recognize and bind to these DNA fragments within several seconds after injection, suggesting that the protein and the DNA retain their native configuration after deposition and during SFM imaging. A time lapse sequence depicting the process of assembly of RNA polymerase-DNA complexes is shown. These results represent the first step for acquiring the capabilities to monitor complex biomolecular processes as they take place in ionic solutions and to characterize their spatial organization.
引用
收藏
页码:12927 / 12931
页数:5
相关论文
共 41 条
[1]   NEW SCANNING TUNNELING MICROSCOPY TIP FOR MEASURING SURFACE-TOPOGRAPHY [J].
AKAMA, Y ;
NISHIMURA, E ;
SAKAI, A ;
MURAKAMI, H .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1990, 8 (01) :429-433
[2]   SHEAR STRESS-INDUCED REORGANIZATION OF THE SURFACE-TOPOGRAPHY OF LIVING ENDOTHELIAL-CELLS IMAGED BY ATOMIC-FORCE MICROSCOPY [J].
BARBEE, KA ;
DAVIES, PF ;
LAL, R .
CIRCULATION RESEARCH, 1994, 74 (01) :163-171
[3]  
BERG OG, 1985, ANNU REV BIOPHYS BIO, V14, P131, DOI 10.1146/annurev.bb.14.060185.001023
[4]  
BEZANILLA M, 1994, SCANNING MICROSCOPY, V7, P1145
[5]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[6]   CIRCULAR DNA-MOLECULES IMAGED IN AIR BY SCANNING FORCE MICROSCOPY [J].
BUSTAMANTE, C ;
VESENKA, J ;
TANG, CL ;
REES, W ;
GUTHOLD, M ;
KELLER, R .
BIOCHEMISTRY, 1992, 31 (01) :22-26
[7]   SCANNING FORCE MICROSCOPY OF NUCLEIC-ACIDS AND NUCLEOPROTEIN ASSEMBLIES [J].
BUSTAMANTE, C ;
KELLER, D ;
YANG, GL .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 1993, 3 (03) :363-372
[8]   3-DIMENSIONAL STRUCTURE OF ESCHERICHIA-COLI RNA-POLYMERASE HOLOENZYME DETERMINED BY ELECTRON CRYSTALLOGRAPHY [J].
DARST, SA ;
KUBALEK, EW ;
KORNBERG, RD .
NATURE, 1989, 340 (6236) :730-732
[9]  
DEHASETH P L, 1978, Biochemistry, V17, P1612, DOI 10.1021/bi00602a006
[10]   IMAGING CRYSTALS, POLYMERS, AND PROCESSES IN WATER WITH THE ATOMIC FORCE MICROSCOPE [J].
DRAKE, B ;
PRATER, CB ;
WEISENHORN, AL ;
GOULD, SAC ;
ALBRECHT, TR ;
QUATE, CF ;
CANNELL, DS ;
HANSMA, HG ;
HANSMA, PK .
SCIENCE, 1989, 243 (4898) :1586-1589