A comprehensive study of the liquid-crystalline properties of 51 bimetallic compounds based upon 1,3,5-triketonate and 1,3,5,7-tetraketonate ligands is reported. These materials are liquid crystalline when six or more side chains are appended to the mesogenic core, and only columnar phases were observed. Most of the liquid crystals were homonuclear dicopper complexes. Schiff-base derivatives of some of the triketones allowed for the synthesis of heteronuclear bimetallic liquid crystals. The NiCu and NiPd Schiff-base complexes are the first heteronuclear liquid crystals with proximate (strongly interacting) metal centers. Other heteronuclear complexes investigated were not liquid crystalline due to the tendency to retain coordinated solvent or to form strongly associated structures in the absence of axial ligands. The use of complementary shapes was demonstrated as a means to generate average relative organizations (correlations) between the complexes. The presence of these correlated structures was shown through comparisons of the structures, phase behavior, and the immiscibility between materials having the same phase but different shapes. Correlated structures were shown which produce average rotations of 90-degrees and 180-degrees between nearest-neighbor molecules. A crystal structure of one compound confirmed that a similar superstructure was exhibited in the solid state. In addition, it was found that the correlated structures exhibit relatively short (3.29 angstrom) correlations between the mesogens, thereby allowing for strong intermolecular interactions. The ability to control the orientation and relative position of transition metal centers in liquid crystals has applications in the design of new liquid-crystalline materials with useful magnetic and electronic properties.