COMPUTING A FACE IN AN ARRANGEMENT OF LINE SEGMENTS AND RELATED PROBLEMS

被引:27
作者
CHAZELLE, B
EDELSBRUNNER, H
GUIBAS, L
SHARIR, M
SNOEYINK, J
机构
[1] UNIV ILLINOIS,DEPT COMP SCI,URBANA,IL 61801
[2] DIGITAL EQUIPMENT CORP,DEC SYST RES CTR,PALO ALTO,CA 94301
[3] MIT,COMP SCI LAB,CAMBRIDGE,MA 02139
[4] STANFORD UNIV,DEPT COMP SCI,STANFORD,CA 94305
[5] TEL AVIV UNIV,SCH MATH SCI,IL-69978 TEL AVIV,ISRAEL
[6] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
关键词
COMPUTATIONAL GEOMETRY; ARRANGEMENTS; RANDOMIZED INCREMENTAL ALGORITHMS; PROBABILISTIC BACKWARDS ANALYSIS; DAVENPORT-SCHINZEL SEQUENCES;
D O I
10.1137/0222077
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a randomized incremental algorithm for computing a single face in an arrangement of n line segments in the plane that is fairly simple to implement. The expected running time of the algorithm is O(n alpha(n)log n). The analysis of the algorithm uses a novel approach that generalizes and extends the Clarkson-Shor analysis technique [in Discrete Comput.Geom.,4 (1989), pp. 387-421]. A few extensions of the technique, obtaining efficient randomized incremental algorithms for constructing the entire arrangement of a collection of line segments and for computing a single face in an arrangement of Jordan arcs are also presented.
引用
收藏
页码:1286 / 1302
页数:17
相关论文
共 20 条
[11]  
MEHLHORN K, 1990, UNPUB
[12]  
MILLER N, 1991, UNPUB EFFICIENT RAND
[13]  
MITCHELL JSB, 1990, UNPUB COMPUTING SING
[14]   A FAST PLANAR PARTITION ALGORITHM .1. [J].
MULMULEY, K .
JOURNAL OF SYMBOLIC COMPUTATION, 1990, 10 (3-4) :253-280
[15]   SEPARATING 2 SIMPLE POLYGONS BY A SEQUENCE OF TRANSLATIONS [J].
POLLACK, R ;
SHARIR, M ;
SIFRONY, S .
DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (02) :123-136
[16]  
Seidel R., 1991, Computational Geometry: Theory and Applications, V1, P51, DOI 10.1016/0925-7721(91)90012-4
[17]   SMALL-DIMENSIONAL LINEAR-PROGRAMMING AND CONVEX HULLS MADE EASY [J].
SEIDEL, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :423-434
[18]   PLANAR REALIZATIONS OF NONLINEAR DAVENPORT-SCHINZEL SEQUENCES BY SEGMENTS [J].
WIERNIK, A ;
SHARIR, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (01) :15-47
[19]  
YANIV E, 1991, THESIS TEL AVIV U TE
[20]  
[No title captured]