HYPERSENSITIVITY TO PERTURBATIONS IN THE QUANTUM BAKERS MAP

被引:55
作者
SCHACK, R [1 ]
CAVES, CM [1 ]
机构
[1] SANTA FE INST,SANTA FE,NM 87501
关键词
D O I
10.1103/PhysRevLett.71.525
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze a randomly perturbed quantum version of the baker's transformation, a prototype of an area-conserving chaotic map. By simulating the perturbed evolution, we estimate the information needed to follow a perturbed Hilbert-space vector in time. We find that the Landauer erasure cost associated with this grows very rapidly and becomes larger than the maximum statistical entropy given by the logarithm of the dimension of Hilbert space. The quantum baker's map displays a hypersensitivity to perturbations analogous to behavior found in the classical case. This hypersensitivity characterizes ''quantum chaos'' in a way that is relevant to statistical physics.
引用
收藏
页码:525 / 528
页数:4
相关论文
共 22 条
[1]  
Arnold V.I., 1968, ERGODIC PROBLEMS CLA
[2]   THE QUANTIZED BAKERS TRANSFORMATION [J].
BALAZS, NL ;
VOROS, A .
ANNALS OF PHYSICS, 1989, 190 (01) :1-31
[3]   INFORMATION AND ENTROPY [J].
CAVES, CM .
PHYSICAL REVIEW E, 1993, 47 (06) :4010-4017
[4]  
CAVES CM, 1993, PHYSICAL ORIGINS TIM
[5]  
CVITANOVIC P, 1992, QUANTUM CHAOS QUANTU
[6]   HOW RANDOM IS A COIN TOSS [J].
FORD, J .
PHYSICS TODAY, 1983, 36 (04) :40-47
[7]   THE ARNOLD CAT - FAILURE OF THE CORRESPONDENCE PRINCIPLE [J].
FORD, J ;
MANTICA, G ;
RISTOW, GH .
PHYSICA D, 1991, 50 (03) :493-520
[8]  
Haake F., 2018, QUANTUM SIGNATURES C, V54, DOI DOI 10.1007/978-3-642-05428-0
[9]   ENTROPY OF RANDOM QUANTUM STATES [J].
JONES, KRW .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (23) :L1247-L1251
[10]   IRREVERSIBILITY AND HEAT GENERATION IN THE COMPUTING PROCESS [J].
LANDAUER, R .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1961, 5 (03) :183-191