ON THE INDEPENDENCE NUMBER OF RANDOM CUBIC GRAPHS

被引:20
作者
FRIEZE, A
SUEN, S
机构
[1] Department of Mathematics, Carnegie Mellon University, Pittsburgh, Pennsylvania
关键词
D O I
10.1002/rsa.3240050504
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show that as n --> infinity, the independence number alpha(G), for almost all 3-regular graphs G on n vertices, is at least (6 log(3/2) - 2 - epsilon)n, for any constant epsilon > 0. We prove this by analyzing a greedy algorithm for finding independent sets. (C) 1994 John Wiley & Sons, Inc.
引用
收藏
页码:649 / 664
页数:16
相关论文
共 4 条
[1]   ASYMPTOTIC NUMBER OF LABELED GRAPHS WITH GIVEN DEGREE SEQUENCES [J].
BENDER, EA ;
CANFIELD, ER .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 24 (03) :296-307
[2]  
Bollobas B, 1980, EUR J COMBINAT, V1, P311
[3]   ON THE INDEPENDENCE AND CHROMATIC-NUMBERS OF RANDOM REGULAR GRAPHS [J].
FRIEZE, AM ;
LUCZAK, T .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1992, 54 (01) :123-132
[4]  
FRIEZE AM, 1993, SODA 93, P341