EXPRESSION OF GLIAL FIBRILLARY ACIDIC PROTEIN AND ITS RELATION TO TRACT FORMATION IN EMBRYONIC ZEBRAFISH (DANIO-RERIO)

被引:69
作者
MARCUS, RC
EASTER, SS
机构
[1] UNIV MICHIGAN,PROGRAM NEUROSCI,ANN ARBOR,MI 48109
[2] UNIV MICHIGAN,DEPT BIOL,ANN ARBOR,MI 48109
关键词
BRACHYDANIO RERIO; GFAP; INTERMEDIATE FILAMENTS; AXONAL SCAFFOLD; FISH GLIA;
D O I
10.1002/cne.903590302
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
To address possible roles of glial cells during axon outgrowth in the vertebrate central nervous system, we investigated the appearance and distribution of the glial-specific intermediate filament, glial fibrillary acidic protein (GFAP), during early embryogenesis of the zebrafish (Danio rerio). Immunopositive cells first appear at 15 hours, which is at the time of, or slightly before, the first axon outgrowth in the brain. Immunopositive processes are not initially present in a pattern that prefigures the location of the first tracts but rather are distributed widely as endfeet adjacent to the pia, overlying most of the surface of the brain with the exception of the dorsal and ventral midline. The first evidence for a specific association of immunopositive cells with the developing tracts is observed at 24 hours in the hindbrain, where immunopositive processes border axons in the medial longitudinal fasciculus. By 48 hours, immunopositive processes have disappeared from most of the subpial lamina and are found exclusively in association with tracts and commissures in three forms: endfeet, radially oriented processes, and tangentially oriented processes parallel to axons. This last form is particularly prominent in the transverse plane of the hindbrain, where they define the boundaries between rhombomeres. These results suggest that glial cells contribute to the development and organization of the central nervous system by supporting early axon outgrowth in the subpial lamina and by forming boundaries around tracts and between neuromeres. The results are discussed in relation to previous results on neuron-glia interactions and possible roles of glial cells in axonal guidance. (C) 1995 Wiley-Liss, Inc.
引用
收藏
页码:365 / 381
页数:17
相关论文
共 91 条
[51]   DEVELOPMENT OF RETICULOSPINAL NEURONS OF THE ZEBRAFISH .2. EARLY AXONAL OUTGROWTH AND CELL BODY POSITION [J].
MENDELSON, B .
JOURNAL OF COMPARATIVE NEUROLOGY, 1986, 251 (02) :172-184
[52]  
MESSENGER NJ, 1989, DEVELOPMENT, V107, P43
[53]  
METCALFE WK, 1990, DEVELOPMENT, V110, P491
[54]  
MILLER RH, 1986, J NEUROCYTOL, V15, P187, DOI 10.1007/BF01611655
[55]   MONOCLONAL-ANTIBODY R2D5 REVEALS MIDSAGITTAL RADIAL GLIAL SYSTEM IN POSTNATALLY DEVELOPING AND ADULT BRAIN-STEM [J].
MORI, K ;
IKEDA, J ;
HAYAISHI, O .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (14) :5489-5493
[56]  
MYERS PZ, 1986, J NEUROSCI, V6, P2278
[57]  
NOBLE M, 1984, J NEUROSCI, V4, P1892
[58]   GLIAL FIBRILLARY ACIDIC PROTEIN (GFAP) FROM GOLDFISH - ITS LOCALIZATION IN VISUAL PATHWAY [J].
NONA, SN ;
SHEHAB, SAS ;
STAFFORD, CA ;
CRONLYDILLON, JR .
GLIA, 1989, 2 (03) :189-200
[59]  
NONA SN, 1992, DEV REGENERATION NER, P97
[60]  
NORRIS CR, 1991, J NEUROSCI, V11, P3481