THE METHOD OF RESULTANTS FOR COMPUTING REAL SOLUTIONS OF POLYNOMIAL SYSTEMS

被引:17
作者
ALLGOWER, EL
GEORG, K
MIRANDA, R
机构
[1] Colorado State Univ, Ft. Collins, CO
关键词
ROOTS; POLYNOMIAL SYSTEMS OF EQUATIONS; RESULTANT; CONJUGATE GRADIENT METHOD; LANCZOS METHOD;
D O I
10.1137/0729051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new method for determining the real solutions to a set of polynomial equations is presented. It is based on the theory of multiresultants. The inherently unstable calculation of the determinant is replaced by a stable minimization procedure which is able to take advantage of the sparseness of the resultant matrix. Two numerical examples illustrate the method. The paper contains preliminary work which demonstrates the feasibility of the given approach.
引用
收藏
页码:831 / 844
页数:14
相关论文
共 28 条
[11]  
Golub G.H., 1983, MATRIX COMPUTATIONS
[12]  
HANSEN ER, 1988, RELIABILITY COMPUTIN
[13]   SOME TESTS OF GENERALIZED BISECTION [J].
KEARFOTT, RB .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1987, 13 (03) :197-220
[14]   PRECONDITIONERS FOR THE INTERVAL GAUSS-SEIDEL METHOD [J].
KEARFOTT, RB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (03) :804-822
[15]  
KEARFOTT RB, IN PRESS MATH COMP
[16]   THE CHEATERS HOMOTOPY - AN EFFICIENT PROCEDURE FOR SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS [J].
LI, TY ;
SAUER, T ;
YORKE, JA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (05) :1241-1251
[17]   Alternative Proofs of the Convergence Properties of the Conjugate-Gradient Method [J].
McCormick, G. P. ;
Ritter, K. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1974, 13 (05) :497-518
[18]  
McCormick G.P, 1983, NONLINEAR PROGRAMMIN
[19]   COMPUTING ALL SOLUTIONS TO POLYNOMIAL SYSTEMS USING HOMOTOPY CONTINUATION [J].
MORGAN, A ;
SOMMESE, A .
APPLIED MATHEMATICS AND COMPUTATION, 1987, 24 (02) :115-138
[20]  
MORGAN A. P., 1987, SOLVING POLYNOMIAL S