A STATISTICAL APPROACH TO THE CONFIGURATION-INTERACTION PROBLEM

被引:6
作者
ZARRABIAN, S
KAZEMPOUR, MK
ESTEVEZ, GA
机构
[1] UNIV CENT FLORIDA,DEPT ELECT ENGN,ORLANDO,FL 32816
[2] UNIV CENT FLORIDA,DEPT STAT,ORLANDO,FL 32816
[3] UNIV CENT FLORIDA,DEPT PHYS,ORLANDO,FL 32816
关键词
D O I
10.1016/0009-2614(91)85052-X
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new statistical approach to the configuration interaction problem is proposed. It will potentially reduce the size of CI vectors significantly and thus alleviate one of the main hindrances to doing very large CI calculations. This method will also provide us with statistical confidence limits on lower and upper bounds. These confidence bounds are qualitatively different from mathematically more rigorous lower bounds discussed elsewhere. The approach is discussed and possible algorithms presented.
引用
收藏
页码:55 / 59
页数:5
相关论文
共 24 条
[11]   AN EFFICIENT IMPLEMENTATION OF THE FULL-CI METHOD USING AN (N-2)-ELECTRON PROJECTION SPACE [J].
HARRISON, RJ ;
ZARRABIAN, S .
CHEMICAL PHYSICS LETTERS, 1989, 158 (05) :393-398
[12]   A NEW DETERMINANT-BASED FULL CONFIGURATION-INTERACTION METHOD [J].
KNOWLES, PJ ;
HANDY, NC .
CHEMICAL PHYSICS LETTERS, 1984, 111 (4-5) :315-321
[13]   AN ITERATION METHOD FOR THE SOLUTION OF THE EIGENVALUE PROBLEM OF LINEAR DIFFERENTIAL AND INTEGRAL OPERATORS [J].
LANCZOS, C .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1950, 45 (04) :255-282
[14]   DETERMINANT BASED CONFIGURATION-INTERACTION ALGORITHMS FOR COMPLETE AND RESTRICTED CONFIGURATION-INTERACTION SPACES [J].
OLSEN, J ;
ROOS, BO ;
JORGENSEN, P ;
JENSEN, HJA .
JOURNAL OF CHEMICAL PHYSICS, 1988, 89 (04) :2185-2192
[15]  
PAIGE CC, 1976, J I MATH APPL, V18, P341
[16]   CLIFFORD-ALGEBRA UNITARY-GROUP APPROACH TO MANY-ELECTRON CORRELATION-PROBLEM [J].
PALDUS, J ;
SARMA, CR .
JOURNAL OF CHEMICAL PHYSICS, 1985, 83 (10) :5135-5152
[17]  
PIECUCH P, 1990, PHYS REV B, V42
[18]   SPINOR GROUP AND ITS RESTRICTIONS [J].
SARMA, CR ;
PALDUS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (06) :1140-1145
[19]   EXACT SOLUTION (WITHIN A DOUBLE-ZETA BASIS SET) OF THE SCHRODINGER ELECTRONIC EQUATION FOR WATER [J].
SAXE, P ;
SCHAEFER, HF ;
HANDY, NC .
CHEMICAL PHYSICS LETTERS, 1981, 79 (02) :202-204
[20]   A NEW DIRECT CI METHOD FOR LARGE CI EXPANSIONS IN A SMALL ORBITAL SPACE [J].
SIEGBAHN, PEM .
CHEMICAL PHYSICS LETTERS, 1984, 109 (05) :417-423