ANALYTICITY AND GLOBAL EXISTENCE OF SMALL SOLUTIONS TO SOME NONLINEAR SCHRODINGER-EQUATIONS

被引:34
作者
HAYASHI, N
SAITOH, S
机构
[1] Department of Mathematics, Faculty of Engineering, Gunma University, Kiryu
关键词
D O I
10.1007/BF02096777
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we will study the nonlinear Schrödinger equations: {Mathematical expression}. It is shown that the solutions of (*) exist and are analytic in space variables for t∈ℝ{set minus}{0} if φ(x) (∈H2 n+1,2(ℝxn)) decay exponentially as |x|→∞ and n≧2. © 1990 Springer-Verlag.
引用
收藏
页码:27 / 41
页数:15
相关论文
共 14 条
[1]  
AIKAWA H, UNPUB ANAL SOLUTIONS
[2]  
BAILLON JB, 1977, CR HEBD ACAD SCI, V284, P864
[3]  
DONG CC, 1981, J DIFFER EQUATIONS, V42, P335
[4]  
GINIBRE J, 1978, ANN I H POINCARE A, V28, P287
[5]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :1-32
[6]   CLASSICAL-SOLUTIONS OF NONLINEAR SCHRODINGER-EQUATIONS [J].
HAYASHI, N .
MANUSCRIPTA MATHEMATICA, 1986, 55 (02) :171-190
[7]   ON SOLUTIONS OF THE INITIAL-VALUE PROBLEM FOR THE NONLINEAR SCHRODINGER-EQUATIONS [J].
HAYASHI, N ;
NAKAMITSU, K ;
TSUTSUMI, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 71 (02) :218-245
[8]  
HAYASHI N, IN PRESS ANN I H POI
[9]  
KATO T, 1987, ANN I H POINCARE-PHY, V46, P113
[10]   NONLINEAR EVOLUTION-EQUATIONS AND ANALYTICITY .1. [J].
KATO, T ;
MASUDA, K .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1986, 3 (06) :455-467