Toxic shock syndrome toxin 1 (TSST-1) is a M(r) 22,000 protein produced by Staphylococcus aureus. It is thought to be the cause of toxic shock syndrome. We investigated the hypothesis that TSST-1 induces nitric oxide (NO) synthase and that the NO formed may be involved in the pathogenesis of toxic shock syndrome. We used the murine monocyte-macrophage cell line J744.2 that responds to TSST-1 and also expresses NO synthase activity upon immunological stimulation. J774.2 macrophages stimulated with TSST-1 (10-100 nM) generated nitrite, a breakdown product of NO, and induced concentration-dependent elevations of cGMP in the pig kidney epithelial cell line (LLC-PK1). This latter effect was due to the generation of L-arginine-derived NO for it was (i) abolished by oxyhemoglobin (10-mu-M), a scavenger of NO, or by methylene blue (10-mu-M), an inhibitor of NO-activated guanylate cyclase; (ii) potentiated by superoxide dismutase (100 units/ml), which prolongs the life of NO; (iii) inhibited by N(G)-monomethyl-L-arginine (0.3 mM), an inhibitor of NO synthase; (iv) significantly decreased when L-arginine (0.4 mM) in the medium was replaced by D-arginine (0.4 mM). Moreover, TSST-1 (100 nM) enhanced the activity of cytosolic NO synthase in J774.2 cells. Hydrocortisone (1-mu-M) but not indomethacin (5-mu-g/ml) or salicylic acid (5-mu-g/ml) prevented the generation of NO2- and the increases in cGMP levels in LLC-PK1 cells induced by J774.2 cells stimulated with TSST-1. The effects of hydrocortisone were partially reversed by coincubation with RU 486 (1-mu-M), an antagonist of glucocorticoid receptors. Thus, TSST-1 and perhaps other exotoxins produced by Gram-positive bacteria induce NO synthase and the increased NO formation may contribute to toxic shock syndrome and possibly to changes in the immune responses that accompany infection.