AN ALGORITHM FOR A SINGLY CONSTRAINED CLASS OF QUADRATIC PROGRAMS SUBJECT TO UPPER AND LOWER BOUNDS

被引:119
作者
PARDALOS, PM
KOVOOR, N
机构
[1] Computer Science Department, The Pennsylvania State University, University Park, 16802, PA
关键词
Global optimization; quadratic programming; separable programming;
D O I
10.1007/BF01585748
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper gives an O(n) algorithm for a singly constrained convex quadratic program using binary search to solve the Kuhn-Tucker system. Computational results indicate that a randomized version of this algorithm runs in expected linear time and is suitable for practical applications. For the nonconvex case an ε-approximate algorithm is proposed which is based on convex and piecewise linear approximations of the objective function. © 1990 North-Holland.
引用
收藏
页码:321 / 328
页数:8
相关论文
共 13 条
[1]  
Aho A. V., 1974, DESIGN ANAL COMPUTER
[2]  
BLUM M, 1972, J COMPUT SYST SCI, V7, P448
[3]   AN O(N) ALGORITHM FOR QUADRATIC KNAPSACK-PROBLEMS [J].
BRUCKER, P .
OPERATIONS RESEARCH LETTERS, 1984, 3 (03) :163-166
[4]   QUASI-NEWTON UPDATES WITH BOUNDS [J].
CALAMAI, PH ;
MORE, JJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (06) :1434-1441
[5]  
Driebeek N.J., 1966, MANAGE SCI, V12, P485, DOI [10.1287/mnsc.12.7.576, DOI 10.1287/MNSC.12.7.576]
[6]   INTEGER PROGRAMMING ALGORITHMS - FRAMEWORK AND STATE-OF-ART SURVEY [J].
GEOFFRION, AM ;
MARSTEN, RE .
MANAGEMENT SCIENCE SERIES A-THEORY, 1972, 18 (09) :465-491
[7]  
Held M., 1974, Mathematical Programming, V6, P62, DOI 10.1007/BF01580223
[8]   A POLYNOMIALLY BOUNDED ALGORITHM FOR A SINGLY CONSTRAINED QUADRATIC PROGRAM [J].
HELGASON, R ;
KENNINGTON, J ;
LALL, H .
MATHEMATICAL PROGRAMMING, 1980, 18 (03) :338-343
[9]  
MEYER RR, 1984, MATH PROGRAMMING STU, V22, P185
[10]   METHODS FOR GLOBAL CONCAVE MINIMIZATION - A BIBLIOGRAPHIC SURVEY [J].
PARDALOS, PM ;
ROSEN, JB .
SIAM REVIEW, 1986, 28 (03) :367-379