QUASI-NEWTON UPDATES WITH BOUNDS

被引:36
作者
CALAMAI, PH [1 ]
MORE, JJ [1 ]
机构
[1] ARGONNE NATL LAB,DIV MATH & COMP SCI,ARGONNE,IL 60439
关键词
D O I
10.1137/0724092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1434 / 1441
页数:8
相关论文
共 15 条
[1]  
Aho A. V., 1974, DESIGN ANAL COMPUTER, V1st
[2]  
AVILA JH, 1979, SIAM J NUM, V2, P260
[3]  
BROYDEN CG, 1965, MATH COMPUT, V19, P577, DOI DOI 10.1090/S0025-5718-1965-0198670-6
[4]   CONVERGENCE THEOREMS FOR LEAST-CHANGE SECANT UPDATE METHODS [J].
DENNIS, JE ;
WALKER, HF .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (06) :949-987
[5]   QUASI-NEWTON METHODS, MOTIVATION AND THEORY [J].
DENNIS, JE ;
MORE, JJ .
SIAM REVIEW, 1977, 19 (01) :46-89
[6]  
DENNIS JE, 1983, NUMERICAL METHODS UN
[7]   ORTHOGONAL PROJECTIONS ON CONVEX-SETS FOR NEWTON-LIKE METHODS [J].
GRZEGORSKI, SM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (06) :1208-1219
[8]  
LAM B, 1978, MATH COMPUT, V32, P447, DOI 10.1090/S0025-5718-1978-0483389-3
[9]   CONVERGENCE RESULTS FOR SCHUBERTS METHOD FOR SOLVING SPARSE NON-LINEAR EQUATIONS [J].
MARWIL, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (04) :588-604
[10]  
MARWIL E, 1978, THESIS CORNELL U ITH