A Simpler GMRES

被引:63
作者
Walker, Homer F. [1 ]
Zhou, Lu [1 ]
机构
[1] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
基金
美国国家科学基金会; 美国能源部;
关键词
GMRES; GMRES(m); Large-scale nonsymmetric linear systems;
D O I
10.1002/nla.1680010605
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized minimal residual (GMRES) method is widely used for solving very large, nonsymmetric linear systems, particularly those that arise through discretization of continuous mathematical models in science and engineering. By shifting the Arnoldi process to begin with Ar-0 instead of r(0), we obtain simpler Gram-Schmidt and Householder implementations of the GMRES method that do not require upper Hessenberg factorization. The Gram-Schmidt implementation also maintains the residual vector at each iteration, which allows cheaper restarts of GMRES(m) and may otherwise be useful.
引用
收藏
页码:571 / 581
页数:11
相关论文
共 7 条
[1]  
SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856, DOI 10.1137/0907058
[2]  
Swarztrauber P. N., 1979, ACM Transactions on Mathematical Software, V5, P352, DOI 10.1145/355841.355850
[3]   EFFICIENT HIGH-ACCURACY SOLUTIONS WITH GMRES(M) [J].
TURNER, K ;
WALKER, HF .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (03) :815-825
[4]  
Van der Vorst H. A., 1991, 9180 DELFT U TECHN F
[5]  
Walker H. F., 1988, SIAM J SCI STAT COMP, V9, P52
[6]   IMPLEMENTATIONS OF THE GMRES METHOD [J].
WALKER, HF .
COMPUTER PHYSICS COMMUNICATIONS, 1989, 53 (1-3) :311-320
[7]  
Young D. M., 1980, J LIN ALG APPL, V34, P159