SOLVABLE LIE-ALGEBRAS OF DIMENSION LESS-THAN-OR-EQUAL-TO 4 OVER PERFECT FIELDS

被引:29
作者
PATERA, J [1 ]
ZASSENHAUS, H [1 ]
机构
[1] OHIO STATE UNIV,DEPT MATH,COLUMBUS,OH 43210
关键词
D O I
10.1016/0024-3795(90)90251-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solvable Lie algebras of dimension not greater than four over a perfect field of reference are described in terms of their nilpotent frame, counted over finite fields of q elements, and classified over the real and complex number fields. The number dq,n of nonisomorphic solvable Lie algebras of dimension n over Fq roughly speaking grows as a polynomial in n with qn-2 as highest term. But there are smaller additional terms depending on the residue class of q modulo (n-1)! if n≤4. © 1990.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 10 条
[1]  
Artin E., 1927, ABH MATH SEM HAMBURG, V5, P225
[2]  
Mubarakzyanov G. M., 1963, IZV VYSSH UCHEBN ZAV, V35, P104
[3]  
Mubarakzyanov G.M., 1963, IZV VYSSH UCHEBN ZAV, V34, P99
[4]  
Mubarakzyanov G. M., 1963, IZV VYSSH UCHEBN ZAV, V32, P114
[5]   INVARIANTS OF REAL LOW DIMENSION LIE-ALGEBRAS [J].
PATERA, J ;
SHARP, RT ;
WINTERNITZ, P ;
ZASSENHAUS, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1976, 17 (06) :986-994
[6]   THE CONSTRUCTION OF SOLVABLE LIE-ALGEBRAS FROM EQUIDIMENSIONAL NILPOTENT ALGEBRAS [J].
PATERA, J ;
ZASSENHAUS, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 133 :89-120
[7]  
POHST M, 1989, ALGORITHMIC NUMBER T
[8]   ON THE IDENTIFICATION OF A LIE-ALGEBRA GIVEN BY ITS STRUCTURE CONSTANTS .1. DIRECT DECOMPOSITIONS, LEVI DECOMPOSITIONS, AND NIL RADICALS [J].
RAND, D ;
WINTERNITZ, P ;
ZASSENHAUS, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1988, 109 :197-246
[9]  
ZASSENHAUS H, 1939, HAMBURFER ABH, V63, P1
[10]  
[No title captured]