EFFECTS OF HEAVY-ELEMENT SETTLING ON SOLAR-NEUTRINO FLUXES AND INTERIOR STRUCTURE

被引:90
作者
PROFFITT, CR [1 ]
机构
[1] NASA,GODDARD SPACE FLIGHT CTR,IUE OBSERV,GREENBELT,MD 20771
关键词
DIFFUSION; ELEMENTARY PARTICLES; SUN; ABUNDANCES; INTERIOR; OSCILLATIONS;
D O I
10.1086/174030
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the effects of gravitational settling of both He and heavier elements on the predicted solar neutrino fluxes and interior sound speed and density profiles. We find that while the structural changes that result from the inclusion of both He and heavy-element settling are only slightly larger than the changes resulting from the inclusion of He settling alone, the additional increases in expected neutrino fluxes are of comparable size. Our preferred model with both He and heavy-element settling has neutrino count rates of 9.0 SNU for Cl-37 detectors and 137 SNU for Ga-71 detectors, as compared to 7.1 and 127 SNU for a comparable model without any diffusive separation, or 8.0 and 132 SNU for a model that includes He settling alone. We suggest that the correction factors by which the predicted neutrino fluxes of solar models calculated without including the effects of diffusion should be multiplied are 1.25 +/- 0.08 for Cl detectors, 1.07 +/- 0.02 for Ga detectors, and 1.28 +/- 0.09 for the B-8 flux (1 sigma errors). Comparison of internal sound speed and density profiles strongly suggests that the additional changes in calculated p-mode oscillation frequencies due to the inclusion of heavy-element settling will be small compared to the changes that result from He settling alone, especially for the higher degree modes. All models with diffusive separation give much better agreement with the observed depth of the convection zone than do nondiffusive models. The model that includes both He and heavy-element settling requires an initial He mass fraction Y = 0.280 and has a surface He abundance of Y = 0.251 at the solar age.
引用
收藏
页码:849 / 855
页数:7
相关论文
共 42 条
[11]   SPEED OF SOUND IN THE SOLAR INTERIOR [J].
CHRISTENSENDALSGAARD, J ;
DUVALL, TL ;
GOUGH, DO ;
HARVEY, JW ;
RHODES, EJ .
NATURE, 1985, 315 (6018) :378-382
[12]   EFFECTS OF DIFFUSION ON SOLAR MODELS AND THEIR OSCILLATION FREQUENCIES [J].
CHRISTENSENDALSGAARD, J ;
PROFFITT, CR ;
THOMPSON, MJ .
ASTROPHYSICAL JOURNAL, 1993, 403 (02) :L75-L78
[13]   THE DEPTH OF THE SOLAR CONVECTION ZONE [J].
CHRISTENSENDALSGAARD, J ;
GOUGH, DO ;
THOMPSON, MJ .
ASTROPHYSICAL JOURNAL, 1991, 378 (01) :413-437
[14]   OSCILLATIONS OF SOLAR MODELS WITH INTERNAL ELEMENT DIFFUSION [J].
COX, AN ;
GUZIK, JA ;
KIDMAN, RB .
ASTROPHYSICAL JOURNAL, 1989, 342 (02) :1187-1206
[15]  
Dappen W., 1991, LECTURE NOTES PHYSIC, V388, P111, DOI DOI 10.1007/3-540-54420-8_
[16]  
DAPPEN W, 1993, IAU C, V137, P208
[17]  
DAVIS R, 1990, 21ST P INT COSM RAY, P134
[18]   HELIOSEISMOLOGY - OSCILLATIONS AS A DIAGNOSTIC OF THE SOLAR INTERIOR [J].
DEUBNER, FL ;
GOUGH, D .
ANNUAL REVIEW OF ASTRONOMY AND ASTROPHYSICS, 1984, 22 :593-619
[19]  
EGGLETON PP, 1973, ASTRON ASTROPHYS, V23, P325
[20]  
GAVRIN VN, 1991, NUCL PHYS B S, V19, P84