RESONANCE IN THE DYNAMICS OF CHEMICAL-SYSTEMS SIMULATED BY THE IMPLICIT MIDPOINT SCHEME

被引:42
作者
MANDZIUK, M
SCHLICK, T
机构
[1] NYU,DEPT CHEM,NEW YORK,NY 10012
[2] COURANT INST MATH SCI,NEW YORK,NY 10012
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
D O I
10.1016/0009-2614(95)00316-V
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The numerical behavior of the symplectic, implicit midpoint method with a wide range of integration timesteps is examined through an application to a diatomic molecule governed by a Morse potential. Our oscillator with a 12.6 fs period exhibits notable, integrator induced, timestep- (Delta t) dependent resonances and we predict approximate values of Delta t where they will occur. The particular case of a third-order resonance (Delta t approximate to 7 fs here) leads to instability, and higher-order resonances (n = 4, 5) to large energetic fluctuations and/or corrupted phase diagrams. Significantly, for Delta t > 10 fs the energy errors remain bound.
引用
收藏
页码:525 / 535
页数:11
相关论文
共 28 条
[1]  
[Anonymous], 1987, DYNAMICS PROTEINS NU
[2]  
[Anonymous], 1987, COMPUTER SIMULATION, DOI DOI 10.2307/2938686
[3]  
Arnold V. I., 1989, MATH METHODS CLASSIC, V60
[4]   SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS [J].
CHANNELL, PJ ;
SCOVEL, C .
NONLINEARITY, 1990, 3 (02) :231-259
[5]   SYMPLECTIC INTEGRATORS FOR LARGE-SCALE MOLECULAR-DYNAMICS SIMULATIONS - A COMPARISON OF SEVERAL EXPLICIT METHODS [J].
GRAY, SK ;
NOID, DW ;
SUMPTER, BG .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (05) :4062-4072
[6]  
Guzman Gonzales O, PREPRINT
[7]  
KANG F, 1990, APPL IND MATH, P17
[8]  
LAMBERT JD, 1991, NUMERICAL METHODS OR
[9]  
LIEBERMAN MA, 1980, NONLINEAR DYNAM, P119
[10]   INCREASING THE TIME STEP IN MOLECULAR-DYNAMICS [J].
NYBERG, AM ;
SCHLICK, T .
CHEMICAL PHYSICS LETTERS, 1992, 198 (06) :538-546