2 STRONGLY POLYNOMIAL CUT CANCELING ALGORITHMS FOR MINIMUM-COST NETWORK FLOW

被引:26
作者
ERVOLINA, TR
MCCORMICK, ST
机构
[1] UNIV BRITISH COLUMBIA,FAC COMMERCE & BUSINESS ADM,VANCOUVER V6T 1Z2,BC,CANADA
[2] IBM CORP,POUGHKEEPSIE,NY 12602
[3] COLUMBIA UNIV,DEPT IND ENGN & OPERAT RES,NEW YORK,NY 10027
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0166-218X(93)90025-J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present two new strongly polynomial algorithms for the minimum cost network flow problem (MCNF). They are dual algorithms based on cancelling positive augmenting cuts, which are the duals of negative augmenting cycles. The first cancels maximum mean cuts, which are cuts whose increase in the dual objective function per arc is maximum. The second, Dual Cancel and Tighten, employs a more flexible cut selection rule that allows it to be more efficient. These algorithms are duals to the Minimum Mean Cycle Cancelling and (Primal) Cancel and Tighten algorithms of Goldberg and Tarjan. These algorithms do not use explicit scaling to achieve polynomiality.
引用
收藏
页码:133 / 165
页数:33
相关论文
共 54 条
[1]  
Ahuja R.K., 1989, HDB OPERATIONS RES M, DOI 10.1016/S0927-0507(89)01005-4
[2]   IMPROVED TIME-BOUNDS FOR THE MAXIMUM FLOW PROBLEM [J].
AHUJA, RK ;
ORLIN, JB ;
TARJAN, RE .
SIAM JOURNAL ON COMPUTING, 1989, 18 (05) :939-954
[3]  
AHUJA RK, 1988, MIT193 OP RES CTR TE
[4]  
BARAHONA F, 1990, REDUCING MATCHING PO
[5]  
Berge C., 1962, THEORY GRAPHS ITS AP
[6]  
Bertsekas D.P., 1979, DISTRIBUTED ALGORITH
[7]  
BLAND RG, 1985, 661 CORN U SCH OP RE
[8]  
Christofides N., 1975, GRAPH THEORY ALGORIT
[9]  
Chvatal V., 1983, LINEAR PROGRAMMING
[10]   SENSITIVITY THEOREMS IN INTEGER LINEAR-PROGRAMMING [J].
COOK, W ;
GERARDS, AMH ;
SCHRIJVER, A ;
TARDOS, E .
MATHEMATICAL PROGRAMMING, 1986, 34 (03) :251-264