A POSTERIORI ERROR ESTIMATION WITH FINITE-ELEMENT METHODS OF LINES FOR ONE-DIMENSIONAL PARABOLIC-SYSTEMS

被引:31
作者
ADJERID, S
FLAHERTY, JE
WANG, YJ
机构
[1] RENSSELAER POLYTECH INST, DEPT COMP SCI, TROY, NY 12180 USA
[2] RENSSELAER POLYTECH INST, SCI COMPUTAT RES CTR, TROY, NY 12180 USA
关键词
D O I
10.1007/BF01385737
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the solution of one-dimensional linear initial-boundary value problems by a finite element method of lines using a piecewise p(th)-degree polynomial basis. A posteriori estimates of the discretization error are obtained as the solutions of either local parabolic or local elliptic finite element problems using piecewise polynomial corrections of degree p + 1 that vanish at element ends. Error estimates computed in this manner are shown to converge in energy under mesh refinement to the exact finite element discretization error. Computational results indicate that the error estimates are robust over a wide range of mesh spacings and polynomial degrees and are, furthermore, applicable in situations that are not supported by the analysis.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 23 条
[1]  
Abromowitz M., 1965, HDB MATH FUNCTIONS
[2]   2ND-ORDER FINITE-ELEMENT APPROXIMATIONS AND A POSTERIORI ERROR ESTIMATION FOR TWO-DIMENSIONAL PARABOLIC-SYSTEMS [J].
ADJERID, S ;
FLAHERTY, JE .
NUMERISCHE MATHEMATIK, 1988, 53 (1-2) :183-198
[3]   A LOCAL REFINEMENT FINITE-ELEMENT METHOD FOR TWO-DIMENSIONAL PARABOLIC-SYSTEMS [J].
ADJERID, S ;
FLAHERTY, JE .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (05) :792-811
[4]   A MOVING FINITE-ELEMENT METHOD WITH ERROR ESTIMATION AND REFINEMENT FOR ONE-DIMENSIONAL TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ADJERID, S ;
FLAHERTY, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1986, 23 (04) :778-796
[5]   A MOVING-MESH FINITE-ELEMENT METHOD WITH LOCAL REFINEMENT FOR PARABOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
ADJERID, S ;
FLAHERTY, JE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1986, 55 (1-2) :3-26
[6]  
ADJERID S, 1992, UNPUB POSTERIORI ERR
[7]  
ADJERID S, 1992, IN PRESS PHYSICA D
[8]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[9]   ERROR-ESTIMATES FOR THE COMBINED H-VERSION AND P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
DORR, MR .
NUMERISCHE MATHEMATIK, 1981, 37 (02) :257-277
[10]  
BABUSKA I, 1987, FINITE ELEM ANAL DES, V3, P341