THE TRACE OF THE HEAT KERNEL ON A COMPACT HYPERBOLIC 3-ORBIFOLD

被引:3
作者
COGNOLA, G [1 ]
VANZO, L [1 ]
机构
[1] IST NAZL FIS NUCL, GRP COLL TRENTO, TRENT, ITALY
关键词
D O I
10.1063/1.530456
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The heat coefficients related to the Laplace-Beltrami operator defined on the hyperbolic compact manifold H-3/GAMMA are evaluated in the case in which the discrete group GAMMA contains elliptic and hyperbolic elements. It is shown that while hyperbolic elements give only exponentially vanishing corrections to the trace of the heat kernel, elliptic elements modify all coefficients of the asymptotic expansion, but the Weyl term, which remains unchanged. Some physical consequences are briefly discussed in the examples.
引用
收藏
页码:3109 / 3116
页数:8
相关论文
共 45 条
[21]   ASYMPTOTIC EXPANSION FOR HEAT EQUATION [J].
GREINER, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1971, 41 (03) :163-&
[22]   THERMODYNAMICS OF AN ULTRA-RELATIVISTIC IDEAL BOSE-GAS [J].
HABER, HE ;
WELDON, HA .
PHYSICAL REVIEW LETTERS, 1981, 46 (23) :1497-1500
[23]   CAN ONE HEAR SHAPE OF A DRUM [J].
KAC, M .
AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (4P2) :1-&
[24]  
McKean J.H.P., 1967, J DIFFER GEOM, V1, P43, DOI [10.4310/jdg/1214427880, DOI 10.4310/JDG/1214427880]
[25]   SOME PROPERTIES OF THE EIGENFUNCTIONS OF THE LAPLACE-OPERATOR ON RIEMANNIAN MANIFOLDS [J].
MINAKSHISUNDARAM, S ;
PLEIJEL, A .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1949, 1 (03) :242-256
[26]   SPECTRAL GEOMETRY OF THE RIEMANN-CARTAN SPACE-TIME AND THE AXIAL ANOMALY [J].
OBUKHOV, YN .
PHYSICS LETTERS B, 1982, 108 (4-5) :308-310
[27]   ULTRARELATIVISTIC BOSE-EINSTEIN CONDENSATION IN THE EINSTEIN UNIVERSE AND ENERGY CONDITIONS [J].
PARKER, L ;
YANG, Z .
PHYSICAL REVIEW D, 1991, 44 (08) :2421-2431
[28]   THE GEOMETRIES OF 3-MANIFOLDS [J].
SCOTT, P .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1983, 15 (SEP) :401-487
[29]  
SELBERG A, 1956, J INDIAN MATH SOCNS, V20, P47
[30]   THE ASYMPTOTICS OF THE HEAT-EQUATION FOR A BOUNDARY-VALUE PROBLEM [J].
SMITH, L .
INVENTIONES MATHEMATICAE, 1981, 63 (03) :467-493