ON THE MODE-LOCKING UNIVERSALITY FOR CRITICAL CIRCLE MAPS

被引:14
作者
CVITANOVIC, P [1 ]
GUNARATNE, GH [1 ]
VINSON, MJ [1 ]
机构
[1] UNIV CHICAGO, JAMES FRANCK INST, CHICAGO, IL 60637 USA
关键词
D O I
10.1088/0951-7715/3/3/015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The conjectured universality of the Hausdorff dimension of the fractal set formed by the set of the irrational winding parameter values for critical circle maps is shown to follow from the universal scalings for quadratic irrational winding numbers.
引用
收藏
页码:873 / 885
页数:13
相关论文
共 44 条
[31]  
KIM SH, 1990, PHYSICA D
[32]  
LANFORD OE, 1985, PHYSICA D, V14, P403, DOI 10.1016/0167-2789(85)90099-5
[33]  
LANFORD OE, 1987, 1986 P IAMP C MATH P
[34]   DEVELOPMENT OF NONLINEAR TRANSFORMATIONS FOR IMPROVING CONVERGENCE OF SEQUENCES [J].
LEVIN, D .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1973, 3 (04) :371-388
[35]  
Mackay R. S., 1982, THESIS PRINCETON U
[36]   UNIVERSAL PROPERTIES OF THE TRANSITION FROM QUASI-PERIODICITY TO CHAOS IN DISSIPATIVE SYSTEMS [J].
OSTLUND, S ;
RAND, D ;
SETHNA, J ;
SIGGIA, E .
PHYSICA D, 1983, 8 (03) :303-342
[37]   INTERMITTENT TRANSITION TO TURBULENCE IN DISSIPATIVE DYNAMICAL-SYSTEMS [J].
POMEAU, Y ;
MANNEVILLE, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 74 (02) :189-197
[38]   UNIVERSAL TRANSITION FROM QUASI-PERIODICITY TO CHAOS IN DISSIPATIVE SYSTEMS [J].
RAND, D ;
OSTLUND, S ;
SETHNA, J ;
SIGGIA, ED .
PHYSICAL REVIEW LETTERS, 1982, 49 (02) :132-135
[39]  
RAND D, 1988, NONLINEARITY, V1, P78
[40]  
Ruelle D., 1978, THERMODYNAMIC FORMAL