INVARIANT CONNECTIONS AND VORTICES

被引:75
作者
GARCIAPRADA, O [1 ]
机构
[1] INST HAUTES ETUD SCI,F-91440 BURES SUR YVETTE,FRANCE
关键词
D O I
10.1007/BF02096862
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the vortex equations on a line bundle over a compact Kahler manifold. These are a generalization of the classical vortex equations over R2. We first prove an invariant version of the theorem of Donaldson, Uhlenbeck and Yau relating the existence of a Hermitian-Yang-Mills metric on a holomorphic bundle to the stability of such a bundle. We then show that the vortex equations are a dimensional reduction of the Hermitian-Yang-Mills equation. Using this fact and the theorem above we give a new existence proof for the vortex equations and describe the moduli space of solutions.
引用
收藏
页码:527 / 546
页数:20
相关论文
共 22 条
[1]   VORTICES IN HOLOMORPHIC LINE BUNDLES OVER CLOSED KAHLER-MANIFOLDS [J].
BRADLOW, SB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 135 (01) :1-17
[2]  
BRADLOW SB, 1991, J DIFFER GEOM, V33, P169
[3]  
DONALDSON S., 1990, OXFORD MATH MONOGRAP
[4]   INFINITE DETERMINANTS, STABLE BUNDLES AND CURVATURE [J].
DONALDSON, SK .
DUKE MATHEMATICAL JOURNAL, 1987, 54 (01) :231-247
[5]  
GARCIAPRADA, IN PRESS INT J MATH
[6]  
GARCIAPRADA O, IN PRESS B LONDON MA
[7]  
GARCIAPRADA O, 1991, THESIS U OXFORD
[8]  
Ginsburg V. L., 1950, ZH EKSP TEOR FIZ, V20, P1064
[9]  
GRIFFITHS P, 1978, PRINCIPLES ALGEBRAIC
[10]  
HITCHIN NJ, 1987, P LOND MATH SOC, V55, P59