CANCELLATION EXPONENTS AND FRACTAL SCALING

被引:21
作者
BERTOZZI, AL
CHHABRA, AB
机构
[1] UNIV CHICAGO,JAMES FRANCK INST,CHICAGO,IL 60637
[2] UNIV CHICAGO,DEPT PHYS,CHICAGO,IL 60637
来源
PHYSICAL REVIEW E | 1994年 / 49卷 / 05期
关键词
D O I
10.1103/PhysRevE.49.4716
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We discuss a relationship between cancellation exponents [E. Ott et al., Phys. Rev. Lett. 69, 2654 (1992); Y. Du and E. Ott, Physica D 67, 387 (1993)] and the classical Holder exponents [J. Feder, Fractals (Plenum, New York, 1988)] for fractal scaling. We discuss cancellation exponents in deterministic and stochastic settings and present two examples, that of Brownian motion and that of velocity data from fully developed turbulence [K. R. Sreenivasan (experimental data)].
引用
收藏
页码:4716 / 4719
页数:4
相关论文
共 14 条
[1]   ON THE MULTIFRACTAL NATURE OF FULLY-DEVELOPED TURBULENCE AND CHAOTIC SYSTEMS [J].
BENZI, R ;
PALADIN, G ;
PARISI, G ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18) :3521-3531
[2]  
DU YA, UNPUB
[3]   FRACTAL DIMENSIONS OF FAST DYNAMO MAGNETIC-FIELDS [J].
DU, YS ;
OTT, E .
PHYSICA D, 1993, 67 (04) :387-417
[4]  
FEDER J, 1988, FRACTALS
[5]  
Frisch U., 1985, TURBULENCE PREDICTAB, P84
[6]  
Gard T.C., 1988, INTRO STOCHASTIC DIF
[7]   FRACTAL MEASURES AND THEIR SINGULARITIES - THE CHARACTERIZATION OF STRANGE SETS [J].
HALSEY, TC ;
JENSEN, MH ;
KADANOFF, LP ;
PROCACCIA, I ;
SHRAIMAN, BI .
PHYSICAL REVIEW A, 1986, 33 (02) :1141-1151
[8]   FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS [J].
MANDELBROT, BB ;
VANNESS, JW .
SIAM REVIEW, 1968, 10 (04) :422-+
[9]   SIGN-SINGULAR MEASURES - FAST MAGNETIC DYNAMOS, AND HIGH-REYNOLDS-NUMBER FLUID TURBULENCE [J].
OTT, E ;
DU, YS ;
SREENIVASAN, KR ;
JUNEJA, A ;
SURI, AK .
PHYSICAL REVIEW LETTERS, 1992, 69 (18) :2654-2657
[10]  
Rudin W., 1987, REAL COMPLEX ANAL