ON THE ORDER OF ELIMINATING DOMINATED STRATEGIES

被引:29
作者
GILBOA, I
KALAI, E
ZEMEL, E
机构
[1] J.L. Kellogg Graduate School of Management, Northwestern University, Evanston
基金
美国国家科学基金会;
关键词
game theory; strategy domination;
D O I
10.1016/0167-6377(90)90046-8
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
It is known that different orders of eliminating dominated strategies in n-person games may yield different reduced games. We give conditions which guarantee that the reduced game is unique. For finite games, the conditions include the well-known cases of strict dominance, and in a slightly weaker form, of regular dominance for zero sum and similar games. © 1990.
引用
收藏
页码:85 / 89
页数:5
相关论文
共 12 条
[1]  
GALE D, 1950, ANN MATH STUD, V24, P89
[2]  
GILBOA I, 1989, IN PRESS ELIMINATION
[3]  
KNUTH DE, 1988, OR LETT, P103
[4]   ON THE STRATEGIC STABILITY OF EQUILIBRIA [J].
KOHLBERG, E ;
MERTENS, JF .
ECONOMETRICA, 1986, 54 (05) :1003-1037
[5]  
LUCE RD, 1957, GAMES DECISIONS INTR, P100
[6]   DOMINANCE SOLVABLE VOTING SCHEMES [J].
MOULIN, H .
ECONOMETRICA, 1979, 47 (06) :1337-1351
[7]  
MOULIN H, 1981, GAME THEORY SOCIAL S
[8]  
Myerson R. B, 1990, GAME THEORY ANAL CON
[9]  
OWEN G, 1982, GAME THEORY, P23
[10]  
ROCKET JC, 1980, SELECTION UNIQUE EQU