GLOBAL EXISTENCE OF HOMOCLINIC AND PERIODIC-ORBITS FOR A CLASS OF AUTONOMOUS HAMILTONIAN-SYSTEMS

被引:11
作者
BUFFONI, B
TOLAND, JF
机构
[1] School of Mathematical Sciences, University of Bath, Bath
关键词
D O I
10.1006/jdeq.1995.1068
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
When nonlinear, reversible fourth order Hamiltonian systems have a saddle-focus at a hyperbolic equilibrium of zero energy, geometric conditions on the Hamiltonian are given to ensure the existence of a symmetric homoclinic orbit which is the limit of certain specific zero-energy periodic orbits uniformly on compact time intervals. When the equilibrium is a centre. the existence of a large amplitude, zero-energy, periodic orbit which is not given by Lyapunov's Centre Theorem is proved. (C) 1995 Academic Press. Inc.
引用
收藏
页码:104 / 120
页数:17
相关论文
共 19 条
[1]   RADIATIONLESS OPTICAL SOLITONS WITH OSCILLATING TAILS [J].
AKHMEDIEV, NN ;
BURYAK, AV ;
KARLSSON, M .
OPTICS COMMUNICATIONS, 1994, 110 (5-6) :540-544
[2]  
Amick C.J., 1991, EUR J APPL MATH, V3, P97
[3]   GLOBAL UNIQUENESS OF HOMOCLINIC ORBITS FOR A CLASS OF 4TH ORDER EQUATIONS [J].
AMICK, CJ ;
TOLAND, JF .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (04) :591-597
[4]   POINTS OF EGRESS IN PROBLEMS OF HAMILTONIAN-DYNAMICS [J].
AMICK, CJ ;
TOLAND, JF .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1991, 109 :405-417
[5]  
Belyakov L.A., 1990, SEL MATH SOV, V9, P219
[6]   CASCADE OF HOMOCLINIC ORBITS FOR HAMILTONIAN-SYSTEMS - FURTHER PROPERTIES [J].
BUFFONI, B .
NONLINEARITY, 1993, 6 (06) :1091-1092
[7]  
BUFFONI B, IN PRESS J DIFFERENT
[8]  
BUFFONI B, BIFURCATION COALESCE
[9]  
BUFFONI B, IN PRESS NONLINEAR A
[10]  
BUFFONI B, GLOBAL CONDITION QUA