GLOBAL UNIQUENESS OF HOMOCLINIC ORBITS FOR A CLASS OF 4TH ORDER EQUATIONS

被引:13
作者
AMICK, CJ [1 ]
TOLAND, JF [1 ]
机构
[1] UNIV BATH,SCH MATH SCI,BATH BA2 7AY,AVON,ENGLAND
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1992年 / 43卷 / 04期
关键词
D O I
10.1007/BF00946252
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show the global existence and uniqueness of certain orbits homoclinic to the zero stationary solution of the fourth order equation ax"" + beta-x" + gamma-x + k(x) = 0, x > 0, (0) when alpha, gamma > 0 > beta, dk/dx < 0 for x > 0 and k(0) = 0. The existence problem is approached via the general theory of [1] and uniqueness follows from the Maximum Principle and some geometrical observations about the role of convexity. There are no small amplitude assumptions.
引用
收藏
页码:591 / 597
页数:7
相关论文
共 11 条
[1]   POINTS OF EGRESS IN PROBLEMS OF HAMILTONIAN-DYNAMICS [J].
AMICK, CJ ;
TOLAND, JF .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1991, 109 :405-417
[2]  
AMICK CJ, IN PRESS EUROPEAN J
[3]   HOMOCLINIC, HETEROCLINIC, AND PERIODIC-ORBITS FOR A CLASS OF INDEFINITE HAMILTONIAN-SYSTEMS [J].
HOFER, H ;
TOLAND, J .
MATHEMATISCHE ANNALEN, 1984, 268 (03) :387-403
[4]  
Hofer H., 1985, Delft Progress Report, V10, P238
[5]   COMPARATIVE LAGRANGIAN FORMULATIONS FOR LOCALIZED BUCKLING [J].
HUNT, GW ;
WADEE, MK .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 434 (1892) :485-502
[7]  
TOLAND JF, 1988, ANN I H POINCARE-AN, V5, P211
[8]  
TOLAND JF, 1986, P SYMP PURE MATH, V45, P447
[10]  
TOLAND JF, 1984, P CTR MATH ANAL AUST, V8, P51