A SIMPLE AND EFFECTIVE SELF-ADAPTIVE MOVING MESH FOR ENTHALPY FORMULATIONS OF PHASE-CHANGE PROBLEMS

被引:6
作者
DUNCAN, DB
机构
[1] Department of Mathematics, Heriot-Watt University
关键词
D O I
10.1093/imanum/11.1.55
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A self-adaptive moving mesh for enthalpy formulations of diffusion driven phase change problems is described. The PDE is approximated by a finite element method on a moving, irregular mesh. The mesh is determined by a novel equidistribution principle and is concentrated in the phase transition regions and uniform in regions of pure phase.
引用
收藏
页码:55 / 78
页数:24
相关论文
共 20 条
[11]  
Mitchell A. R., 1980, FINITE DIFFERENCE ME
[13]   A SIMPLE ADAPTIVE TECHNIQUE FOR NONLINEAR-WAVE PROBLEMS [J].
SANZSERNA, JM ;
CHRISTIE, I .
JOURNAL OF COMPUTATIONAL PHYSICS, 1986, 67 (02) :348-360
[15]   BOUNDARY-FITTED COORDINATE SYSTEMS FOR NUMERICAL-SOLUTION OF PARTIAL-DIFFERENTIAL EQUATIONS - A REVIEW [J].
THOMPSON, JF ;
WARSI, ZUA ;
MASTIN, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 47 (01) :1-108
[16]   AN ADAPTIVE MOVING GRID METHOD FOR ONE-DIMENSIONAL SYSTEMS OF PARTIAL-DIFFERENTIAL EQUATIONS [J].
VERWER, JG ;
BLOM, JG ;
SANZSERNA, JM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (02) :454-486
[17]   IMPLICIT FINITE-DIFFERENCE SOLUTIONS OF THE ENTHALPY FORMULATION OF STEFAN-PROBLEMS [J].
VOLLER, VR .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1985, 5 (02) :201-214
[18]  
WHITE AB, 1982, SIAM J NUMER ANAL, V19, P683, DOI 10.1137/0719048
[19]  
WHITE RE, 1982, SIAM J NUMER ANAL, V19, P1158, DOI 10.1137/0719083
[20]  
WILLIAMS MA, 1987, ORNL6393