STOCHASTIC STABILIZATION AND DESTABILIZATION

被引:192
作者
MAO, XR [1 ]
机构
[1] UNIV STRATHCLYDE,DEPT STAT & MODELLING SCI,GLASGOW G1 1XH,SCOTLAND
关键词
STOCHASTIC STABILIZATION AND DESTABILIZATION; ALMOST SURELY EXPONENTIAL STABILITY; NONLINEAR SYSTEM; BROWNIAN MOTION;
D O I
10.1016/0167-6911(94)90050-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is shown in this paper that any nonlinear system x(t) = f(x(t), t) in R(d) can be stabilized by Brownian motion provided \f(x,t)\ less-than-or-equal-to K\x\ for some K > 0. On the other hand, this system can also be destabilized by Brownian motion if the dimension d greater-than-or-equal-to 2. Similar results are also obtained for any given stochastic differential equation dx(t) = f(x(t), t) + g(x(t), t) dW(t).
引用
收藏
页码:279 / 290
页数:12
相关论文
共 13 条
[1]  
[Anonymous], 1980, STOCHASTICS, DOI [10.1080/17442508008833146, DOI 10.1080/17442508008833146]
[2]   STABILIZATION BY NOISE REVISITED [J].
ARNOLD, L .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (07) :235-246
[3]  
ARNOLD L, 1983, SIAM J CONTROL OPTIM, V21, P451, DOI 10.1137/0321027
[4]  
ARNOLD L, 1979, INFORM COMM MATH CHE, P133
[5]   STABILITY OF FAST PERIODIC-SYSTEMS [J].
BELLMAN, R ;
BENTSMAN, J ;
MEERKOV, SM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1985, 30 (03) :289-291
[6]  
Bucher CG, 1988, J FLUIDS STRUCT, V2, P437
[7]  
Has'minskii RZ., 1980, STOCHASTIC STABILITY
[9]  
METIVIER M., 1982, SEMIMARTINGALES
[10]   STOCHASTIC AVERAGING - AN APPROXIMATE METHOD OF SOLVING RANDOM VIBRATION PROBLEMS [J].
ROBERTS, JB ;
SPANOS, PD .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1986, 21 (02) :111-134