YEAST SKN7P FUNCTIONS IN A EUKARYOTIC 2-COMPONENT REGULATORY PATHWAY

被引:136
作者
BROWN, JL
BUSSEY, H
STEWART, RC
机构
[1] MCGILL UNIV, DEPT BIOL, MONTREAL H3A 1B1, PQ, CANADA
[2] MCGILL UNIV, DEPT MICROBIOL & IMMUNOL, MONTREAL H3A 1B1, PQ, CANADA
关键词
PKC1; TRANSCRIPTION FACTOR; 2-COMPONENT SIGNAL TRANSDUCTION PATHWAY; YEAST SKN7P;
D O I
10.1002/j.1460-2075.1994.tb06849.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Previous analysis of the amino acid sequence of Skn7p, the product of the yeast SKN7 gene, revealed a potential 'receiver motif' homologous to that found in bacterial response regulators (signal-transducing effector proteins regulated by phosphorylation at a conserved aspartate residue corresponding to position D427 in Skn7p). We determined the effects of D427N and D427E mutations in Skn7p. The 0427N substitution resulted in diminished activity in four independent in vivo assays of Skn7p function, while the D427E mutation enhanced Skn7p activity in these assays. Our results are consistent with predictions based on the bacterial two-component paradigm and provide experimental evidence that a receiver motif functions in regulating the activity of Skn7p in a eukaryote. Skn7p suppressed growth defects associated with a pkC1 Delta mutation, raising the possibility that PKC1 might play a role in regulating Skn7p. However, epistasis experiments indicate that Skn7p does not appear to function directly downstream of the PKC1-MAP kinase pathway. Rather, Skn7p may function in a two-component signal transduction pathway that acts in parallel with the PKC1 cascade to regulate growth at the cell surface. We present evidence suggesting that Skn7p serves as a transcription factor in such a signaling pathway.
引用
收藏
页码:5186 / 5194
页数:9
相关论文
共 50 条
[1]   PROTEIN HISTIDINE KINASES AND SIGNAL-TRANSDUCTION IN PROKARYOTES AND EUKARYOTES [J].
ALEX, LA ;
SIMON, MI .
TRENDS IN GENETICS, 1994, 10 (04) :133-138
[2]   CONSERVED ASPARTATE RESIDUES AND PHOSPHORYLATION IN SIGNAL TRANSDUCTION BY THE CHEMOTAXIS PROTEIN CHEY [J].
BOURRET, RB ;
HESS, JF ;
SIMON, MI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (01) :41-45
[3]  
BOURRET RB, 1993, J BIOL CHEM, V268, P13089
[4]   SIGNAL TRANSDUCTION PATHWAYS INVOLVING PROTEIN-PHOSPHORYLATION IN PROKARYOTES [J].
BOURRET, RB ;
BORKOVICH, KA ;
SIMON, MI .
ANNUAL REVIEW OF BIOCHEMISTRY, 1991, 60 :401-441
[5]   THE YEAST KRE9 GENE ENCODES AN O-GLYCOPROTEIN INVOLVED IN CELL-SURFACE BETA-GLUCAN ASSEMBLY [J].
BROWN, JL ;
BUSSEY, H .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (10) :6346-6356
[6]   SKN7, A YEAST MULTICOPY SUPPRESSOR OF A MUTATION AFFECTING CELL-WALL BETA-GLUCAN ASSEMBLY, ENCODES A PRODUCT WITH DOMAINS HOMOLOGOUS TO PROKARYOTIC 2-COMPONENT REGULATORS AND TO HEAT-SHOCK TRANSCRIPTION FACTORS [J].
BROWN, JL ;
NORTH, S ;
BUSSEY, H .
JOURNAL OF BACTERIOLOGY, 1993, 175 (21) :6908-6915
[7]   YEAST KILLER PLASMID MUTATIONS AFFECTING TOXIN SECRETION AND ACTIVITY AND TOXIN IMMUNITY FUNCTION [J].
BUSSEY, H ;
SACKS, W ;
GALLEY, D ;
SAVILLE, D .
MOLECULAR AND CELLULAR BIOLOGY, 1982, 2 (04) :346-354
[8]   Mechanistic advances in eukaryotic gene activation [J].
Carey, Michael .
CURRENT OPINION IN CELL BIOLOGY, 1991, 3 (03) :452-460
[9]   ARABIDOPSIS ETHYLENE-RESPONSE GENE ETR1 - SIMILARITY OF PRODUCT TO 2-COMPONENT REGULATORS [J].
CHANG, C ;
KWOK, SF ;
BLEECKER, AB ;
MEYEROWITZ, EM .
SCIENCE, 1993, 262 (5133) :539-544
[10]   MOLECULAR-CLONING AND EXPRESSION OF A HEXAMERIC DROSOPHILA HEAT-SHOCK FACTOR SUBJECT TO NEGATIVE REGULATION [J].
CLOS, J ;
WESTWOOD, JT ;
BECKER, PB ;
WILSON, S ;
LAMBERT, K ;
WU, C .
CELL, 1990, 63 (05) :1085-1097