STOCHASTIC-SYSTEMS OF PARTICLES WITH WEIGHTS AND APPROXIMATION OF THE BOLTZMANN-EQUATION - THE MARKOV PROCESS IN THE SPATIALLY HOMOGENEOUS CASE

被引:6
作者
WAGNER, W [1 ]
机构
[1] INST APPL ANAL & STOCHAST,D-10117 BERLIN,GERMANY
关键词
D O I
10.1080/07362999408809377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of stochastic systems of particles with variable weights is studied. The corresponding empirical measures are shown to converge to the solution of the spatially homogeneous Boltzmann equation. In a certain sense, this class of stochastic processes generalizes the ''Kac master process''.
引用
收藏
页码:639 / 659
页数:21
相关论文
共 7 条
[1]  
ARKERYD L, 1972, ARCH RATION MECH AN, V45, P1
[2]  
ARSENYEV AA, 1987, MATH PHYS, V27, P51
[3]   A RANDOM DISCRETE VELOCITY MODEL AND APPROXIMATION OF THE BOLTZMANN-EQUATION [J].
ILLNER, R ;
WAGNER, W .
JOURNAL OF STATISTICAL PHYSICS, 1993, 70 (3-4) :773-792
[4]  
KAC M, 1955, 3RD P BERK S MATH ST, V3, P171
[5]  
Skorokhod A.V., 1988, STOCHASTIC EQUATIONS
[6]   JUSTIFICATION OF A STOCHASTIC METHOD FOR SOLVING THE BOLTZMANN-EQUATION [J].
SMIRNOV, SN .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1989, 29 (01) :187-192
[7]   A CONVERGENCE PROOF FOR BIRD DIRECT SIMULATION MONTE-CARLO METHOD FOR THE BOLTZMANN-EQUATION [J].
WAGNER, W .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) :1011-1044