3-DIMENSIONAL GRAVITY FROM THE TURAEV-VIRO INVARIANT

被引:67
作者
MIZOGUCHI, S [1 ]
TADA, T [1 ]
机构
[1] KYOTO UNIV, UJI RES CTR, YUKAWA INST THEORET PHYS, UJI, KYOTO 611, JAPAN
关键词
D O I
10.1103/PhysRevLett.68.1795
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the q-deformed su(2) spin network as a three-dimensional quantum gravity model. We show that in the semiclassical continuum limit the Turaev-Viro invariant obtained recently defines a naturally regularized path integral a la Ponzano and Regge, in which a contribution from the cosmological term is effectively included. The regularization-dependent cosmological constant is found to be 4-pi2/k2+O(k-4), where q2k = 1. We also discuss the relation to the Euclidean Chern-Simons-Witten gravity in three dimensions.
引用
收藏
页码:1795 / 1798
页数:4
相关论文
共 12 条
[1]   SPIN NETWORKS ARE SIMPLICIAL QUANTUM-GRAVITY [J].
HASSLACHER, B ;
PERRY, MJ .
PHYSICS LETTERS B, 1981, 103 (01) :21-24
[2]  
KIRILLOV AN, 1989, ADV SERIES MATH PHYS, V7
[3]   3-DIMENSIONAL REGGE QUANTUM-GRAVITY AND 6J SYMBOLS [J].
LEWIS, SM .
PHYSICS LETTERS B, 1983, 122 (3-4) :265-267
[5]   DISCRETE AND CONTINUUM APPROACHES TO 3-DIMENSIONAL QUANTUM-GRAVITY [J].
OOGURI, H ;
SASAKURA, N .
MODERN PHYSICS LETTERS A, 1991, 6 (39) :3591-3600
[6]  
PONZANO G, 1968, SPECTROSCPIC GROUP T
[7]  
REGGE T, 1961, NUOVO CIMENTO, V19, P551
[8]   SEMICLASSICAL APPROXIMATIONS TO 3J-COEFFICIENTS AND 6J-COEFFICIENTS FOR QUANTUM-MECHANICAL COUPLING OF ANGULAR MOMENTA [J].
SCHULTEN, K ;
GORDON, RG .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (10) :1971-1988
[9]   EXACT RECURSIVE EVALUATION OF 3J-COEFFICIENTS AND 6J-COEFFICIENTS FOR QUANTUM-MECHANICAL COUPLING OF ANGULAR MOMENTA [J].
SCHULTEN, K ;
GORDON, RG .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (10) :1961-1970
[10]  
TURAEV VG, IN PRESS LOMI REPORT