MULTIFRACTALITY AND SCALING IN DISORDERED MESOSCOPIC SYSTEMS

被引:112
作者
POOK, W
JANSSEN, M
机构
[1] Institut für Theoretische Physik der Universität, Köln 41, W-5000
来源
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER | 1991年 / 82卷 / 02期
关键词
D O I
10.1007/BF01324339
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We suggest a new method for investigating scaling properties of mesoscopic observables and their distributions in disordered systems showing metal-insulator transition. In such systems quantum interference effects lead to multifractal structure of eigenstates on scales much smaller than the correlation length of the transition which can be described by a set of exponents, the closed-integral-(alpha) spectrum. The analysis of closed-integral-(alpha) spectra can be extended to any scaling variable. Multifractality is an indication for broad distributions of these variables. If the transition is governed by one correlation length only then the closed-integral-(alpha) spectra of normalized scaling variables must be universal. The critical exponent v of the correlation length is determined by the value alpha-(0) where closed-integral-(alpha) takes its maximum and the scaling exponent of normalization x:nu-1 = alpha-(0) + x. As an illustrative example we calculate numerically the closed-integral-(alpha) spectra of eigenstates in the critical regime of 2 d disordered electron systems in high magnetic fields. We find similar closed-integral-(alpha) spectra indicating universal log-normal distributions of scaling variables.
引用
收藏
页码:295 / 298
页数:4
相关论文
共 17 条
[1]   APPLICABILITY OF SCALING DESCRIPTION TO THE DISTRIBUTION OF MESOSCOPIC FLUCTUATIONS [J].
ALTSHULER, BL ;
KRAVTSOV, VE ;
LERNER, IV .
PHYSICS LETTERS A, 1989, 134 (8-9) :488-492
[2]  
ALTSHULER BL, 1986, ZH EKSP TEOR FIZ, V64, P1352
[3]   NEW METHOD FOR A SCALING THEORY OF LOCALIZATION [J].
ANDERSON, PW ;
THOULESS, DJ ;
ABRAHAMS, E ;
FISHER, DS .
PHYSICAL REVIEW B, 1980, 22 (08) :3519-3526
[4]   CRITICAL-BEHAVIOR OF EXTENDED STATES IN DISORDERED-SYSTEMS [J].
AOKI, H .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (06) :L205-L208
[5]   FRACTAL DIMENSIONALITY OF WAVE-FUNCTIONS AT THE MOBILITY EDGE - QUANTUM FRACTAL IN THE LANDAU-LEVELS [J].
AOKI, H .
PHYSICAL REVIEW B, 1986, 33 (10) :7310-7313
[6]   MULTIFRACTAL WAVE-FUNCTION AT THE LOCALIZATION THRESHOLD [J].
CASTELLANI, C ;
PELITI, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (08) :L429-L432
[7]   DIFFUSION NEAR ABSORBING FRACTALS - HARMONIC MEASURE EXPONENTS FOR POLYMERS [J].
CATES, ME ;
WITTEN, TA .
PHYSICAL REVIEW A, 1987, 35 (04) :1809-1824
[8]   SCALING, DIFFUSION, AND THE INTEGER QUANTIZED HALL-EFFECT [J].
CHALKER, JT ;
DANIELL, GJ .
PHYSICAL REVIEW LETTERS, 1988, 61 (05) :593-596
[9]   DIRECT DETERMINATION OF THE F(ALPHA) SINGULARITY SPECTRUM [J].
CHHABRA, A ;
JENSEN, RV .
PHYSICAL REVIEW LETTERS, 1989, 62 (12) :1327-1330
[10]   FRACTAL MEASURES AND THEIR SINGULARITIES - THE CHARACTERIZATION OF STRANGE SETS [J].
HALSEY, TC ;
JENSEN, MH ;
KADANOFF, LP ;
PROCACCIA, I ;
SHRAIMAN, BI .
PHYSICAL REVIEW A, 1986, 33 (02) :1141-1151