PARTICLE MOTION AND INTERACTION IN NONLINEAR FIELD THEORIES

被引:11
作者
DERRICK, GH
KAYKONG, W
机构
[1] Department of Theoretical Physics, School of Physical Sciences, University of St. Andrews, St. Andrews, Fife
关键词
D O I
10.1063/1.1664573
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A variational method is given for determining the motion and interaction of particles associated with fields governed by nonlinear differential equations. For field equations derived from Lagrangian densities of the type g ικ(∂θ/∂xι)(∂θ/ ∂xκ) + f(θ), one obtains an attractive inverse-square law of force between like particles, provided f(θ) vanishes more rapidly than (constant) θ4 for θ → 0.
引用
收藏
页码:232 / &
相关论文
共 84 条
[21]   KINKS [J].
FINKELSTEIN, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1966, 7 (07) :1218-+
[22]   NONLINEAR SPINOR FIELD [J].
FINKELSTEIN, R ;
FRONSDAL, C ;
KAUS, P .
PHYSICAL REVIEW, 1956, 103 (05) :1571-1579
[23]  
FINKELSTEIN R, 1951, PHYS REV, V81, P655
[24]   NONLINEAR SPINOR FIELDS [J].
FINKELSTEIN, R ;
LELEVIER, R ;
RUDERMAN, M .
PHYSICAL REVIEW, 1951, 83 (02) :326-332
[25]   ON THE QUANTIZATION OF A UNITARY FIELD THEORY [J].
FINKELSTEIN, RJ .
PHYSICAL REVIEW, 1949, 75 (07) :1079-1087
[26]   ON SOME GENERAL PROPERTIES OF STATIC SOLUTIONS OF SCHIFFS EQUATION [J].
FORNAGUERA, RO .
NUOVO CIMENTO, 1955, 1 (01) :132-158
[27]  
FRENKEL J, 1934, P ROY SOC LONDON, VA146, P930
[28]  
GLASKO VB, 1959, SOV PHYS JETP-USSR, V8, P312
[29]   ON A CONFORM-INVARIANT SPINOR WAVE EQUATION [J].
GURSEY, F .
NUOVO CIMENTO, 1956, 3 (05) :988-1006
[30]   QUANTUM THEORY OF FIELDS AND ELEMENTARY PARTICLES [J].
HEISENBERG, W .
REVIEWS OF MODERN PHYSICS, 1957, 29 (03) :269-278