FRACTAL TRANSFORMATION OF THE ONE-DIMENSIONAL CHAOS PRODUCED BY LOGARITHMIC MAP

被引:17
作者
KAWABE, T [1 ]
KONDO, Y [1 ]
机构
[1] KAWASAKI MED SCH, DEPT PHYS, KURASHIKI, OKAYAMA 70101, JAPAN
来源
PROGRESS OF THEORETICAL PHYSICS | 1991年 / 85卷 / 04期
关键词
D O I
10.1143/PTP.85.759
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The logarithmic map given by the difference equation x(n+1) = ln(a\x(n)\) generates chaos for e-1 < a < e. The variation of x(n) in n-sequence of a chaos region represents characteristic shapes depending on parameter a. The entropy and Lyapunov exponent for the system are obtained as a function of a. On repeating transformation for the case a = 1.0 by which a point stretched unlimitedly by this dynamical equation is squeezed in the region (0,1), a fractal behaviour characterized by self-affinity can be found in the expansion of the n-sequence for various initial values x0.
引用
收藏
页码:759 / 769
页数:11
相关论文
共 8 条
[1]  
BARNSLEY M, 1988, SCI FRACTAL IMAGES, P44
[2]   SHADOWING OF PHYSICAL TRAJECTORIES IN CHAOTIC DYNAMICS - CONTAINMENT AND REFINEMENT [J].
GREBOGI, C ;
HAMMEL, SM ;
YORKE, JA ;
SAUER, T .
PHYSICAL REVIEW LETTERS, 1990, 65 (13) :1527-1530
[3]   EXACTLY SOLVABLE MODELS SHOWING CHAOTIC BEHAVIOR [J].
KATSURA, S ;
FUKUDA, W .
PHYSICA A, 1985, 130 (03) :597-605
[4]  
KAWABE T, 1990, RES REL DEV OKAYAMA, V3, P19
[5]  
Rasband SN., 1990, CHAOTIC DYNAMICS NON
[6]  
SAITO M, 1988, SUGAKU SEMINAR, V27, P42
[7]   STABLE ORBITS AND BIFURCATION OF MAPS OF INTERVAL [J].
SINGER, D .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (02) :260-267
[8]  
Thompson J. M. T., 1986, NONLINEAR DYNAMICS C