AN ALTERNATIVE DEDUCTION OF THE HILL-TYPE SURFACES OF THE SPATIAL 3-BODY PROBLEM

被引:3
作者
Ge, Yan-Chao [1 ]
Leng, Xiaoling [2 ]
机构
[1] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
[2] Univ Glasgow, Dept Civil Engn, Glasgow G12 8QQ, Lanark, Scotland
关键词
Spatial 3-body problem; best possible zero velocity surface; inertia ellipsoid; canonical transformation;
D O I
10.1007/BF00052612
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the present paper, inequalities stronger than Sundman's and the best possible zero velocity surfaces of the spatial 3-body problem first obtained by Saari (1987) are deduced using a modified version of the transformation developed by Zare (1976). The notion of inertia ellipsoid is used to show the equivalence of the present authors' result to that of Saafi's.
引用
收藏
页码:233 / 254
页数:22
相关论文
共 9 条
[1]  
Golubev V. G., 1968, Soviet Physics - Doklady, V13, P373
[2]   SURFACES OF ZERO VELOCITY IN THE RESTRICTED PROBLEM OF 3 BODIES [J].
LUNDBERG, J ;
SZEBEHELY, V ;
NEREM, RS ;
BEAL, B .
CELESTIAL MECHANICS, 1985, 36 (02) :191-205
[3]  
Poincare H, 1892, METHODS NOUVELLES ME
[4]   FROM ROTATIONS AND INCLINATIONS TO ZERO CONFIGURATIONAL VELOCITY SURFACES .2. THE BEST POSSIBLE CONFIGURATIONAL VELOCITY SURFACES [J].
SAARI, DG .
CELESTIAL MECHANICS, 1987, 40 (3-4) :197-223
[5]   N-BODY PROBLEM OF CELESTIAL MECHANICS [J].
SAARI, DG .
CELESTIAL MECHANICS, 1976, 14 (01) :11-17
[6]  
Whittaker E.T., 1904, TREATISE ANAL DYNAMI
[7]  
WINTNER A, 1910, ANAL FDN CELESTIAL M
[8]  
Wintner A, 1947, ANAL FDN CELESTIAL M
[9]   EFFECTS OF INTEGRALS ON TOTALITY OF SOLUTIONS OF DYNAMICAL-SYSTEMS [J].
ZARE, K .
CELESTIAL MECHANICS, 1976, 14 (01) :73-83