THE BERNSTEIN POLYNOMIAL ESTIMATOR OF A SMOOTH QUANTILE FUNCTION

被引:36
作者
CHENG, C [1 ]
机构
[1] UPJOHN CO,UPJOHN LABS,COMPUTAT CHEM,KALAMAZOO,MI 49007
关键词
QUANTILE FUNCTION; BERNSTEIN POLYNOMIAL; SMOOTHING; APPROXIMATION; SPECTRAL DECOMPOSITION; CONVEXITY;
D O I
10.1016/0167-7152(94)00190-J
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An estimator of a smooth quantile function (q.f.) is constructed by Bernstein polynomial smoothing of the empirical quantile function. Asymptotic behavior of this estimator is demonstrated by a weighted Brownian bridge in-probability uniform approximation. Oscillation behavior of this estimator in finite samples is demonstrated by spectral decomposition and preservation of high-order convexity of the empirical quantile function.
引用
收藏
页码:321 / 330
页数:10
相关论文
共 22 条
[1]  
BREWER KRW, 1986, UNPUB LIKELIHOOD BAS
[2]  
CHENG C, 1993, AM200 TEX U DEPT STA
[3]  
CHENG C, 1993, AM201 TEX U DEPT STA
[4]   STRONG APPROXIMATIONS OF QUANTILE PROCESS [J].
CSORGO, M ;
REVESZ, P .
ANNALS OF STATISTICS, 1978, 6 (04) :882-894
[5]  
CSORGO M, 1981, SRONG APPROXIMATIONS
[6]  
CSORGO M, 1991, NONPARAMETRIC FUNCTI, P213
[7]  
CSORGO M, 1995, IN PRESS ANN STATIST
[8]   ASYMPTOTIC NORMALITY OF THE KERNEL QUANTILE ESTIMATOR [J].
FALK, M .
ANNALS OF STATISTICS, 1985, 13 (01) :428-433
[9]  
HARRELL FE, 1982, BIOMETRIKA, V69, P635
[10]   SUBSAMPLING QUANTILE ESTIMATOR MAJORIZATION INEQUALITIES [J].
KAIGH, WD ;
SORTO, MA .
STATISTICS & PROBABILITY LETTERS, 1993, 18 (05) :373-379