SCALING BEHAVIOR OF CHAOTIC SYSTEMS WITH RIDDLED BASINS

被引:151
作者
OTT, E
SOMMERER, JC
ALEXANDER, JC
KAN, I
YORKE, JA
机构
[1] UNIV MARYLAND,DEPT PHYS,PLASMA RES LAB,COLL PK,MD 20742
[2] UNIV MARYLAND,INST SYST RES,COLL PK,MD 20742
[3] UNIV MARYLAND,DEPT MATH,COLL PK,MD 20742
[4] UNIV MARYLAND,INST PHYS SCI & TECHNOL,COLL PK,MD 20742
[5] JOHNS HOPKINS UNIV,MS EISENHOWER RES CTR,APPL PHYS LAB,LAUREL,MD 20723
[6] GEORGE MASON UNIV,DEPT MATH,FAIRFAX,VA 22030
关键词
D O I
10.1103/PhysRevLett.71.4134
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently it has been shown that there are chaotic attractors whose basins are such that every point in the attractor's basin has pieces of another attractor's basin arbitrarily nearby (the basin is ''riddled'' with holes). Here we report quantitative theoretical results for such basins and compare with numerical experiments on a simple physical model.
引用
收藏
页码:4134 / 4137
页数:4
相关论文
共 8 条
  • [1] RIDDLED BASINS
    Alexander, J. C.
    Yorke, James A.
    You, Zhiping
    Kan, I.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04): : 795 - 813
  • [2] SENSITIVE DEPENDENCE ON PARAMETERS IN NONLINEAR DYNAMICS
    FARMER, JD
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (04) : 351 - 354
  • [3] EXTERIOR DIMENSION OF FAT FRACTALS
    GREBOGI, C
    MCDONALD, SW
    OTT, E
    YORKE, JA
    [J]. PHYSICS LETTERS A, 1985, 110 (01) : 1 - 4
  • [4] KAN I, IN PRESS
  • [5] FRACTAL BASIN BOUNDARIES
    MCDONALD, SW
    GREBOGI, C
    OTT, E
    YORKE, JA
    [J]. PHYSICA D, 1985, 17 (02): : 125 - 153
  • [6] ON THE CONCEPT OF ATTRACTOR
    MILNOR, J
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 99 (02) : 177 - 195
  • [7] OTT E, IN PRESS
  • [8] SOMMERER JC, 1993, NATURE, V365, P136