AN OPTIMAL ALGORITHM FOR THE ONLINE CLOSEST-PAIR PROBLEM

被引:16
作者
SCHWARZ, C [1 ]
SMID, M [1 ]
SNOEYINK, J [1 ]
机构
[1] UNIV BRITISH COLUMBIA,VANCOUVER V6T 1W5,BC,CANADA
关键词
COMPUTATIONAL GEOMETRY; CLOSEST PAIR; POINT LOCATION; CENTROID; AMORTIZATION;
D O I
10.1007/BF01377181
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We give an algorithm that computes the closest pair in a set of n points in k-dimensional space on-line, in 0(n log n) time. The algorithm only uses algebraic functions and, therefore, is optimal. The algorithm maintains a hierarchical subdivision of k-space into hyperrectangles, which is stored in a binary tree. Centroids are used to maintain a balanced decomposition of this tree.
引用
收藏
页码:18 / 29
页数:12
相关论文
共 15 条
[1]  
Chazelle B., 1982, 23rd Annual Symposium on Foundations of Computer Science, P339, DOI 10.1109/SFCS.1982.58
[2]  
DICKERSON MT, 1991, 7TH P ACM S COMP GEO, P234
[3]   LINEAR-TIME ALGORITHMS FOR VISIBILITY AND SHORTEST-PATH PROBLEMS INSIDE TRIANGULATED SIMPLE POLYGONS [J].
GUIBAS, L ;
HERSHBERGER, J ;
LEVEN, D ;
SHARIR, M ;
TARJAN, RE .
ALGORITHMICA, 1987, 2 (02) :209-233
[4]  
HERSHBERGER J, 1987, STANCS871163 STANF U
[5]  
Preparata Franco P, 2012, COMPUTATIONAL GEOMET
[6]   ENUMERATING INTERDISTANCES IN SPACE [J].
Salowe, Jeffrey S. .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1992, 2 (01) :49-59
[7]  
SCHWARZ C, 1992, 3RD P ANN ACM SIAM S, P280
[8]  
Shamos M.I., 1975, 16 ANN S FDN COMPUTE, P151
[9]  
SMID M, 1991, LECT NOTES COMPUT SC, V557, P364
[10]   MAINTAINING THE MINIMAL DISTANCE OF A POINT SET IN POLYLOGARITHMIC TIME [J].
SMID, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 7 (04) :415-431