DISCRETE FORM OF THE GCL FOR MOVING MESHES AND ITS IMPLEMENTATION IN CFD SCHEMES

被引:91
作者
ZHANG, H
REGGIO, M
TREPANIER, JY
CAMARERO, R
机构
关键词
D O I
10.1016/0045-7930(93)90003-R
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The geometric conservation laws (GCL) play a fundamental role in computational fluid dynamics when using moving or even non-moving grids. In this paper, a methodology which represents the GCL in discrete forms in flow solvers is presented. The volumetric change of an arbitrarily moving control cell in multidimensions is obtained following the exact solution of the volumetric increments along the faces. The results can be applied to finite-volume and finite-difference methods.
引用
收藏
页码:9 / 23
页数:15
相关论文
共 35 条
[21]   Approximate Riemann solvers, parameter vectors, and difference schemes (Reprinted from the Journal of Computational Physics, vol 43, pg 357-372, 1981) [J].
Roe, PL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (02) :250-258
[22]  
ROSENFELD M, AIAA880718 PAP
[23]  
ROSENFELD M, AIAA890466 PAP
[24]   ON THE ADOPTION OF VELOCITY VARIABLE AND GRID SYSTEM FOR FLUID-FLOW COMPUTATION IN CURVILINEAR COORDINATES [J].
SHYY, W ;
VU, TC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 92 (01) :82-105
[25]   IMPLICIT FINITE-DIFFERENCE SIMULATION OF FLOW ABOUT ARBITRARY 2-DIMENSIONAL GEOMETRIES [J].
STEGER, JL .
AIAA JOURNAL, 1978, 16 (07) :679-686
[26]   GEOMETRIC CONSERVATION LAW AND ITS APPLICATION TO FLOW COMPUTATIONS ON MOVING GRIDS [J].
THOMAS, PD ;
LOMBARD, CK .
AIAA JOURNAL, 1979, 17 (10) :1030-1037
[27]  
THOMAS PD, AIAA781208 PAP
[28]   A FINITE-VOLUME METHOD FOR THE EULER EQUATIONS ON ARBITRARY LAGRANGIAN-EULERIAN GRIDS [J].
TREPANIER, JY ;
REGGIO, M ;
ZHANG, H ;
CAMARERO, R .
COMPUTERS & FLUIDS, 1991, 20 (04) :399-409
[29]  
TREPANIER JY, AIAA920051 PAP
[30]  
TRULIO JG, 1961, UCLR6522 U CAL LAWR