GLOBAL BIFURCATION ANALYSIS OF THE DOUBLE SCROLL CIRCUIT

被引:58
作者
Komuro, M. [1 ]
Tokunaga, R. [2 ]
Matsumoto, T. [2 ]
Chua, L. O. [3 ]
Hotta, A. [4 ]
机构
[1] Nishi Tokyo Univ, Dept Math, Yamanashi 40901, Japan
[2] Waseda Univ, Dept Elect Engn, Tokyo 169, Japan
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[4] Waseda Univ, Dept Elect Engn, Tokyo 169, Japan
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1991年 / 1卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1142/S0218127491000105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An in-depth analysis is made of the global 2-parameter bifurcation structures of the double scroll circuit in terms of their homoclinic, heteroclinic, and periodic orbits. Many fine details are uncovered via a 3-dimensional "unfolding" of the 2-parameter bifurcation structures. Major findings are: (i) The parameter sets which give rise to the homoclinic and heteroclinic orbits (homoclinic and heteroclinic bifurcation sets) studied in this paper are found to be all connected to each other via only one family of periodic orbits. (ii) Moreover, the structure of the windows of this family essentially determines the global structure of the periodic windows of the double scroll circuit. These bifurcation analyses are accomplished by deriving first the relevant bifurcation equations in exact analytic form and then solving these nonlinear equations by iterations. No numerical integration formula for differential equations are used.
引用
收藏
页码:139 / 182
页数:44
相关论文
共 26 条
[1]   CROSSROAD AREA-SPRING AREA TRANSITION (I) PARAMETER PLANE REPRESENTATION [J].
Carcasses, J. P. ;
Mira, C. ;
Bosch, M. ;
Simo, C. ;
Tatjer, J. C. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (01) :183-196
[2]  
Chua L. O., 1989, INTRO NONLINEAR NETW
[3]   THE DOUBLE SCROLL FAMILY .1. RIGOROUS PROOF OF CHAOS [J].
CHUA, LO ;
KOMURO, M ;
MATSUMOTO, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11) :1072-1097
[4]  
Fujimoto R., 1990, BIFURCATION PHENOMEN, P125
[5]   BIFURCATION PHENOMENA NEAR HOMOCLINIC SYSTEMS - A 2-PARAMETER ANALYSIS [J].
GASPARD, P ;
KAPRAL, R ;
NICOLIS, G .
JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (5-6) :697-727
[6]   BIFURCATIONS IN A PIECEWISE LINEAR-SYSTEM [J].
GEORGE, DP .
PHYSICS LETTERS A, 1986, 118 (01) :17-21
[7]   LOCAL AND GLOBAL BEHAVIOR NEAR HOMOCLINIC ORBITS [J].
GLENDINNING, P ;
SPARROW, C .
JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (5-6) :645-696
[8]   THE CHAOS PRODUCING MECHANISM IN CHUA CIRCUIT [J].
KAHLERT, C .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1988, 16 (02) :227-232
[9]  
Kahlert C., 1991, CHAOTIC HIE IN PRESS
[10]  
Komuro M, 1990, BIFURCATION PHENOMEN, P113