LOCAL AND GLOBAL BEHAVIOR NEAR HOMOCLINIC ORBITS

被引:333
作者
GLENDINNING, P [1 ]
SPARROW, C [1 ]
机构
[1] DEPT PURE MATH & MATH STAT,CAMBRIDGE,ENGLAND
关键词
MATHEMATICAL TECHNIQUES - Differential Equations;
D O I
10.1007/BF01010828
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the local behavior of systems near homoclinic orbits to stationary points of saddle-focus type. We explicitly describe how a periodic orbit approaches homoclinicity and, with the help of numerical examples, discuss how these results relate to global patterns of bifurcations.
引用
收藏
页码:645 / 696
页数:52
相关论文
共 30 条
  • [1] OSCILLATORS WITH CHAOTIC BEHAVIOR - AN ILLUSTRATION OF A THEOREM BY SHILNIKOV
    ARNEODO, A
    COULLET, P
    TRESSER, C
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1982, 27 (01) : 171 - 182
  • [2] POSSIBLE NEW STRANGE ATTRACTORS WITH SPIRAL STRUCTURE
    ARNEODO, A
    COULLET, P
    TRESSER, C
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (04) : 573 - 579
  • [3] Arneodo A., 1982, ASYMPTOTIC CHAOS
  • [4] Belickii G., 1978, RUSS MATH SURV, V33, P107
  • [5] BERNOFF A, 1984, PREPRINT U CAMBRIDGE
  • [6] BROER HW, 1982, ZW8208 RIJKS U PREPR
  • [7] EVANS J, 1983, SIAM J APPL MATH, V42, P219
  • [8] FEROE JA, 1983, SIAM J APPL MATH, V42, P235
  • [9] BIFURCATION PHENOMENA NEAR HOMOCLINIC SYSTEMS - A 2-PARAMETER ANALYSIS
    GASPARD, P
    KAPRAL, R
    NICOLIS, G
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (5-6) : 697 - 727
  • [10] WHAT CAN WE LEARN FROM HOMOCLINIC ORBITS IN CHAOTIC DYNAMICS
    GASPARD, P
    NICOLIS, G
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1983, 31 (03) : 499 - 518