EXACT TRAVELING-WAVE SOLUTIONS FOR OPTICAL-MODELS BASED ON THE NONLINEAR CUBIC-QUINTIC SCHRODINGER-EQUATION

被引:58
作者
GAGNON, L
机构
关键词
D O I
10.1364/JOSAA.6.001477
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:1477 / 1483
页数:7
相关论文
共 24 条
[1]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, DOI [10.1137/1.9781611970883, DOI 10.1137/1.9781611970883]
[2]   MEASUREMENT OF HIGH-ORDER OPTICAL NONLINEAR SUSCEPTIBILITIES IN SEMICONDUCTOR-DOPED GLASSES [J].
ACIOLI, LH ;
GOMES, ASL ;
LEITE, JRR .
APPLIED PHYSICS LETTERS, 1988, 53 (19) :1788-1790
[3]  
AKHMEDIEV NN, 1985, ZH EKSP TEOR FIZ+, V89, P1542
[4]  
An A. N., 1987, Soviet Journal of Quantum Electronics, V17, P1075, DOI 10.1070/QE1987v017n08ABEH009657
[5]  
Byrd P.F., 1971, HDB ELLIPTIC INTEGRA
[6]   QUASI-SOLITON AND OTHER BEHAVIOR OF THE NONLINEAR CUBIC-QUINTIC SCHRODINGER-EQUATION [J].
COWAN, S ;
ENNS, RH ;
RANGNEKAR, SS ;
SANGHERA, SS .
CANADIAN JOURNAL OF PHYSICS, 1986, 64 (03) :311-315
[7]   LIE SYMMETRIES OF A GENERALIZED NON-LINEAR SCHRODINGER-EQUATION .1. THE SYMMETRY GROUP AND ITS SUBGROUPS [J].
GAGNON, L ;
WINTERNITZ, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07) :1493-1511
[8]   LIE SYMMETRIES OF A GENERALIZED NON-LINEAR SCHRODINGER-EQUATION .2. EXACT-SOLUTIONS [J].
GAGNON, L ;
WINTERNITZ, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (05) :469-497
[9]   LIE SYMMETRIES OF A GENERALIZED NON-LINEAR SCHRODINGER-EQUATION .3. REDUCTIONS TO 3RD-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
GAGNON, L ;
GRAMMATICOS, B ;
RAMANI, A ;
WINTERNITZ, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (05) :499-509
[10]   EXACT-SOLUTIONS OF THE CUBIC AND QUINTIC NONLINEAR SCHRODINGER-EQUATION FOR A CYLINDRICAL GEOMETRY [J].
GAGNON, L ;
WINTERNITZ, P .
PHYSICAL REVIEW A, 1989, 39 (01) :296-306