THE DISTANCE TO A POLYHEDRON

被引:26
作者
BERGTHALLER, C [1 ]
SINGER, I [1 ]
机构
[1] ROMANIAN ACAD,INST MATH,R-70700 BUCHAREST,ROMANIA
关键词
D O I
10.1016/0024-3795(92)90174-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give some exact formulas and some estimates for the distance to a polyhedron in a normed linear space E. We show that in the case when E = R(n), endowed with the l(infinity)-norm, these estimates are, in general, better than a recent estimate by Cook, Gerards, Scbrijver, and Tardos [2].
引用
收藏
页码:111 / 129
页数:19
相关论文
共 13 条
[1]  
AUSLENDER A, 1987, PARAMETRIC OPTIMIZAT, P9
[2]   SENSITIVITY THEOREMS IN INTEGER LINEAR-PROGRAMMING [J].
COOK, W ;
GERARDS, AMH ;
SCHRIJVER, A ;
TARDOS, E .
MATHEMATICAL PROGRAMMING, 1986, 34 (03) :251-264
[3]  
Fan K., 1966, LINEAR INEQUALITIES, P99
[4]   ON APPROXIMATE SOLUTIONS OF SYSTEMS OF LINEAR INEQUALITIES [J].
HOFFMAN, AJ .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (04) :263-265
[5]  
Kantorovich L. V., 1977, FUNCTIONAL ANAL
[6]  
LAURENT PJ, 1970, LECT NOTES MATH, V132, P159
[7]  
LI W, 1991, UNPUB LIPSCHITZ CONT
[8]  
Mangasarian O, 1981, METHODS OPERATIONS R, V43, P3
[9]   LIPSCHITZ CONTINUITY OF SOLUTIONS OF LINEAR INEQUALITIES, PROGRAMS AND COMPLEMENTARITY-PROBLEMS [J].
MANGASARIAN, OL ;
SHIAU, TH .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1987, 25 (03) :583-595
[10]  
Robinson S. M., 1973, Linear Algebra and Its Applications, V6, P69, DOI 10.1016/0024-3795(73)90007-4