RENORMALIZATION SCHEME FOR SELF-ORGANIZED CRITICALITY IN SANDPILE MODELS

被引:135
作者
PIETRONERO, L
VESPIGNANI, A
ZAPPERI, S
机构
[1] Dipartimento di Fisica, Università di Roma La Sapienza, 00185 Roma
关键词
D O I
10.1103/PhysRevLett.72.1690
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a renormalization scheme of novel type that allows us to characterize the critical state and the scale invariant dynamics in sandpile models. The attractive fixed point clarifies the nature of self-organization in these systems. Universality classes can be identified and the critical exponents can be computed analytically. We obtain tau = 1.253 for the avalanche exponent and z = 1.234 for the dynamical exponent. These results are in good agreement with computer simulations. The method can be naturally extended to other problems with nonequilibrium stationary states.
引用
收藏
页码:1690 / 1693
页数:4
相关论文
共 26 条
  • [11] SOME MORE SANDPILES
    GRASSBERGER, P
    MANNA, SS
    [J]. JOURNAL DE PHYSIQUE, 1990, 51 (11): : 1077 - 1098
  • [12] SCALING AND UNIVERSALITY IN AVALANCHES
    KADANOFF, LP
    NAGEL, SR
    WU, L
    ZHOU, SM
    [J]. PHYSICAL REVIEW A, 1989, 39 (12): : 6524 - 6537
  • [13] COMPLEX STRUCTURES FROM SIMPLE SYSTEMS
    KADANOFF, LP
    [J]. PHYSICS TODAY, 1991, 44 (03) : 9 - &
  • [14] CASCADES AND SELF-ORGANIZED CRITICALITY
    MANNA, SS
    KISS, LB
    KERTESZ, J
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1990, 61 (3-4) : 923 - 932
  • [15] CRITICAL EXPONENTS OF THE SAND PILE MODELS IN 2 DIMENSIONS
    MANNA, SS
    [J]. PHYSICA A, 1991, 179 (02): : 249 - 268
  • [16] 2-STATE MODEL OF SELF-ORGANIZED CRITICALITY
    MANNA, SS
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (07): : L363 - L369
  • [17] LARGE-SCALE SIMULATION OF AVALANCHE CLUSTER DISTRIBUTION IN SAND PILE MODEL
    MANNA, SS
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (1-2) : 509 - 521
  • [18] SELF-ORGANIZED CRITICALITY IN A CONTINUOUS, NONCONSERVATIVE CELLULAR AUTOMATON MODELING EARTHQUAKES
    OLAMI, Z
    FEDER, HJS
    CHRISTENSEN, K
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (08) : 1244 - 1247
  • [19] PACZUSKI M, IN PRESS
  • [20] THEORY OF FRACTAL GROWTH
    PIETRONERO, L
    ERZAN, A
    EVERTSZ, C
    [J]. PHYSICAL REVIEW LETTERS, 1988, 61 (07) : 861 - 864