BICOVARIANT DIFFERENTIAL GEOMETRY OF THE QUANTUM GROUP GLQ(3)

被引:12
作者
ASCHIERI, P
CASTELLANI, L
机构
[1] IST NAZL FIS NUCL,SEZ TORINO,I-10125 TURIN,ITALY
[2] DIPARTIMENTO FIS TEOR,I-10125 TURIN,ITALY
关键词
D O I
10.1016/0370-2693(92)90887-A
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct a bicovariant differential calculus on the quantum group GL(q)(3), and discuss its restriction to [SU(3)xU(1)]q. The q-algebra of Lie derivatives is found, as well as the Cartan-Maurer equations. All the quantities characterizing the non-communicative geometry of GL(q)(3) are given explicitly.
引用
收藏
页码:299 / 308
页数:10
相关论文
共 30 条
[1]   QUANTUM GROUP CHIRAL-FIELDS AND DIFFERENTIAL YANG-BAXTER EQUATIONS [J].
AREFEVA, IY ;
VOLOVICH, IV .
PHYSICS LETTERS B, 1991, 264 (1-2) :62-68
[2]   QUANTUM GROUP GAUGE-FIELDS [J].
AREFEVA, IY ;
VOLOVICH, IV .
MODERN PHYSICS LETTERS A, 1991, 6 (10) :893-907
[3]  
ASCHIERI P, 1992, CERNTH656592 PREPR
[4]  
BERNARD D, 1991, 1990 P YUK INT SEM K, V260, P389
[5]  
BRZEZINSKI T, 1992, DAMPT9227 PREPR
[6]   SOQ(N) COVARIANT DIFFERENTIAL-CALCULUS ON QUANTUM SPACE AND QUANTUM DEFORMATION OF SCHRODINGER-EQUATION [J].
CAROWWATAMURA, U ;
SCHLIEKER, M ;
WATAMURA, S .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1991, 49 (03) :439-446
[7]   BICOVARIANT DIFFERENTIAL-CALCULUS ON QUANTUM GROUPS SUQ(N) AND SOQ(N) [J].
CAROWWATAMURA, U ;
SCHLIEKER, M ;
WATAMURA, S ;
WEICH, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (03) :605-641
[8]   GAUGE-THEORIES OF QUANTUM GROUPS [J].
CASTELLANI, L .
PHYSICS LETTERS B, 1992, 292 (1-2) :93-98
[9]   BICOVARIANT DIFFERENTIAL-CALCULUS ON THE QUANTUM D=2 POINCARE GROUP [J].
CASTELLANI, L .
PHYSICS LETTERS B, 1992, 279 (3-4) :291-298
[10]  
DRINFELD VG, 1985, DOKL AKAD NAUK SSSR, V32, P254