RELAXATION OF MULTIPLE INTEGRALS IN THE SPACE BV(OMEGA,RP)

被引:19
作者
FONSECA, I
RYBKA, P
机构
[1] Department of Mathematics, Carnegie Mellon University, Pittsburgh
基金
美国国家科学基金会;
关键词
D O I
10.1017/S0308210500027943
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A characterisation of the surface energy density for the relaxation in BV(OMEGA; R(P)) of the functional u --> integral-OMEGA f(x, u(x), del u (x)) dx is obtained. A lemma of De Giorgi is used to modify a sequence near the boundary without increasing its total energy.
引用
收藏
页码:321 / 348
页数:28
相关论文
共 29 条
[1]  
AMBROSIO L, IN PRESS INTEGRAL RE
[2]  
AMBROSIO L, IN PRESS FUNCTIONALS
[3]  
AVILES P, IN PRESS VARIATIONAL
[4]  
BALDO S, 1990, ANN I H POINCARE-AN, V7, P67
[5]   FINE PHASE MIXTURES AS MINIMIZERS OF ENERGY [J].
BALL, JM ;
JAMES, RD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 100 (01) :13-52
[6]   SINGULAR PERTURBATIONS OF VARIATIONAL-PROBLEMS ARISING FROM A 2-PHASE TRANSITION MODEL [J].
BOUCHITTE, G .
APPLIED MATHEMATICS AND OPTIMIZATION, 1990, 21 (03) :289-314
[7]   SURFACE STRESS AND THE CHEMICAL-EQUILIBRIUM OF SMALL CRYSTALS .1. THE CASE OF THE ISOTROPIC SURFACE [J].
CAHN, JW .
ACTA METALLURGICA, 1980, 28 (10) :1333-1338
[8]   STRUCTURED PHASE-TRANSITIONS ON A FINITE INTERVAL [J].
CARR, J ;
GURTIN, ME ;
SLEMROD, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (04) :317-351
[9]  
CLARKE FH, 1985, T AM MATH SOC, V291, P73
[10]  
DALMASO G, 1980, MANUSCRIPTA MATH, V30, P387