RELAXATION OF MULTIPLE INTEGRALS IN THE SPACE BV(OMEGA,RP)

被引:19
作者
FONSECA, I
RYBKA, P
机构
[1] Department of Mathematics, Carnegie Mellon University, Pittsburgh
基金
美国国家科学基金会;
关键词
D O I
10.1017/S0308210500027943
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A characterisation of the surface energy density for the relaxation in BV(OMEGA; R(P)) of the functional u --> integral-OMEGA f(x, u(x), del u (x)) dx is obtained. A lemma of De Giorgi is used to modify a sequence near the boundary without increasing its total energy.
引用
收藏
页码:321 / 348
页数:28
相关论文
共 29 条
[11]  
EVANS LC, 1992, LECTURE NOTES MEASUR
[12]  
Federer H., 1969, GRUNDLEHREN MATH WIS
[13]   THE WULFF THEOREM REVISITED [J].
FONSECA, I .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1991, 432 (1884) :125-145
[14]   THE GRADIENT THEORY OF PHASE-TRANSITIONS FOR SYSTEMS WITH 2 POTENTIAL WELLS [J].
FONSECA, I ;
TARTAR, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1989, 111 :89-102
[15]  
FONSECA I, IN PRESS GRADIENT TH
[16]  
Giaquinta M., 1979, COMMENT MATH U CAROL, V20, P143
[17]  
GIUSTI E, 1984, MINIMAL SURFACES FUN
[18]   SUBLINEAR FUNCTIONS OF MEASURES + VARIATIONAL INTEGRALS [J].
GOFFMAN, C ;
SERRIN, J .
DUKE MATHEMATICAL JOURNAL, 1964, 31 (01) :159-&
[19]   LOCAL MINIMIZERS AND SINGULAR PERTURBATIONS [J].
KOHN, RV ;
STERNBERG, P .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1989, 111 :69-84
[20]  
MODICA L, 1987, ARCH RATION MECH AN, V98, P123, DOI 10.1007/BF00251230