LOGICALLY INDEPENDENT VON-NEUMANN LATTICES

被引:16
作者
REDEI, M
机构
[1] Faculty of Natural Sciences, Loránd Eötvös University, Budapest
关键词
D O I
10.1007/BF00676284
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Three definitions of logical independence of two von Neumann lattices P(M(1)), P(M(2)) Of two sub-von Neumann algebras M(1), M(2) of a von Neumann algebra M are given and the relations of the definitions clarified. It is shown that under weak assumptions the following notion, called ''logical independence'' is the strongest: A boolean AND B not equal 0 for any 0 not equal A epsilon P(M(1)), 0 not equal B epsilon P(M(2)). Propositions relating logical independence of P(M(1)), P(M(2)) to C*-independence, W*-independence, and strict locality of M(1), M(2) are presented.
引用
收藏
页码:1711 / 1718
页数:8
相关论文
共 9 条
[1]   ALGEBRAIC APPROACH TO QUANTUM FIELD THEORY [J].
HAAG, R ;
KASTLER, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (07) :848-&
[2]  
Haag R., 1996, LOCAL QUANTUM PHYS F
[3]  
HARDEGREE G, 1979, LOGICOALGEBRAIC APPR, V2
[4]  
HARDEGREE G, 1976, LOGIC PROBABILITY QU
[5]   GENERAL QUANTUM FIELD THEORIES + STRICT LOCALITY [J].
KRAUS, K .
ZEITSCHRIFT FUR PHYSIK, 1964, 181 (01) :1-&
[6]   LOGICAL INDEPENDENCE IN QUANTUM LOGIC [J].
REDEI, M .
FOUNDATIONS OF PHYSICS, 1995, 25 (03) :411-422
[8]  
Summers S. J., 1990, Reviews in Mathematical Physics, V2, P201, DOI 10.1142/S0129055X90000090
[9]  
TAKESAKI M, 1979, THEORY OPERATOR ALGE, V1