Two sets of sensitivity experiments are presented. The first set consists of three 100-day integrations with perpetual January conditions: a reference integration, an integration with a uniform +2 K sea surface temperature (SST) anomaly, and an integration with an anomaly of reverse sign. The second set is similar, but with perpetual July conditions. The zonal mean components of the water and heat budgets at the surface are studied over ocean and over land separately. The values of the reference integration are very close to those obtained when the model is run with annual cycle conditions, and reasonably close to observed values over 60-degrees-N-40-degrees-S ocean. The SST anomalies produce generally a stronger response in July than in January. This response is linear for the averages over ocean, but if we consider the zonal distribution, only the longwave radiation, latent and sensible heat exhibit a linear response. The model response to temperature increase consists of an enhancement of the water cycle over ocean, and a heat transfer from the ocean, through the latent heat, to the continent. In January, we observe also a water transfer from the ocean to the continent. As a consequence of the heat transfer, the land surface temperature increases by the same magnitude as the SST.