AVERAGED KAUFFMAN INVARIANT AND QUASI-KNOT CONCEPT FOR LINEAR-POLYMERS

被引:14
作者
GROSBERG, A [1 ]
NECHAEV, S [1 ]
机构
[1] LD LANDAU THEORET PHYS INST,MOSCOW 117940,USSR
来源
EUROPHYSICS LETTERS | 1992年 / 20卷 / 07期
关键词
D O I
10.1209/0295-5075/20/7/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose the description of the qualitative idea of quasi-knot for linear open polymers in terms of averaged Kauffman state invariant, which, in turn, can be represented as a partition function of the 2D Potts model with annealed disorder. The qualitative characteristic of quasi-knot complexity is defined and is shown to be a drastically increasing function of the compactness of the 3D chain fold.
引用
收藏
页码:613 / 619
页数:7
相关论文
共 20 条
[1]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[2]   MEAN-FIELD THEORY AND FLUCTUATIONS IN POTTS SPIN-GLASSES .1. [J].
CWILICH, G ;
KIRKPATRICK, TR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (22) :4971-4987
[3]   EXACT PARTITION-FUNCTIONS AND CORRELATION-FUNCTIONS OF MULTIPLE HAMILTONIAN-WALKS ON THE MANHATTAN LATTICE [J].
DUPLANTIER, B ;
DAVID, F .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (3-4) :327-434
[4]   ALGEBRAIC INVARIANTS OF KNOTS AND DISORDERED POTTS-MODEL [J].
GROSBERG, A ;
NECHAEV, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (17) :4659-4672
[5]  
Grosberg A. Y, 1994, STAT PHYS MACROMOLEC
[6]  
GROSBERG AY, 1992, IN PRESS ADV POLYM S
[7]   ON KNOT INVARIANTS RELATED TO SOME STATISTICAL MECHANICAL MODELS [J].
JONES, VFR .
PACIFIC JOURNAL OF MATHEMATICS, 1989, 137 (02) :311-334
[8]   A POLYNOMIAL INVARIANT FOR KNOTS VIA VONNEUMANN-ALGEBRAS [J].
JONES, VFR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :103-111
[9]  
KAUFFMAN LH, 1987, TOPOLOGY, V26, P395
[10]  
KAUFFMAN LH, 1989, ADV THEOR MATH PHYS, V9, P27